554027 Modern Fortran
Programming for Chemists and
Physicists

Dr Pekka Manninen

manninen@cray.com

About this course

4

Lectures: The course consists of |4 hours of face-to-face

learning sessions. Lectures in Period Ill on Mondays from 2.15
pm to 4.00 pm (Jan |13 — Feb 24,2014).

Room: Computer classroom D21 |, Physicum building,
Kumpula campus.

Credits: 2 ECTS. Completing the programming assignments
given after each lecture is required for the credits.

Literature: Metcalf, Reid, Cohen: Modern Fortran Explained
(Oxford University Press, 201 |); Haataja, Rahola, Ruokolainen:
Fortran 95/2003 4th ed. (CSC, 2007). Lecture notes and other
materials will be available online.

Lectures have their origin on the numerous Fortran courses given at
CSC by PM and other people (Sami Saarinen, Sami llvonen,...)

Course page:
http://www.chem.helsinki.fi/~manninen/fortran20 14

Course outline (discussion)

Session | Topics

Jan 13
Jan 20
Jan 27
Feb 3

Feb 10

Feb 17
Feb 24

Basic syntax, program controls, structured programming
Modular programming; Fortran arrays

Input/output: formatting, writing/reading files

Derived datatypes, procedure interfaces, operator overloading

Procedure attributes, parameterized types, abstract interfaces, procedure
pointers, interoperability with C language

Parallel programming with Fortran coarrays

Extended types, polymorphism, type-bound procedures

Web resources

» CSC’s Fortran95/2003 Guide (in Finnish) for free
http://www.csc.fi/csc/julkaisut/oppaat

» Fortran wiki: a resource hub for all aspects of Fortran
programming
http://fortranwiki.org

» GNU Fortran online documents
http://gcc.gnu.org/onlinedocs/gcc-4.8. | /gfortran

» Code examples
nttp://www.nag.co.uk/nagware/examples.asp
nttp://www.personal.psu.edu/jhm/f90/progref.html
nttp://www.physics.unlv.edu/~pang/cp _f90.html

Lecture I: Getting started with
Fortran

Outline

» First encounter with Fortran
» Variables and their assignment

» Control structures

Why learn Fortran?

» Well suited for numerical computations

Likely over 50% of scientific applications are written in Fortran
» Fast code (compilers can optimize well)
» Handy array data types
» Clarity of code
» Portability of code

» Optimized numerical libraries available

Fortran through the ages

» John WV. Backus et al (1954): The IBM Mathematical
Formula Translating System

» Early years development: Fortran Il (1958), Fortran IV
(1961), Fortran 66 & Basic Fortran (1966)

» Fortran 77 (1978)

» Fortran 90 (1991) major revision, Fortran 95 (1995) a
minor revision to it

Fortran through the ages

» Fortran 2003: major revision, adding e.g. object-oriented
features
”Fortran 95/2003” is the current de facto standard

» The latest standard is Fortran 2008 (approved 2010), a
minor upgrade to 2003
» All relevant compilers implement fully the 2003 standard

Fortran 2008 features still under construction, Cray and Intel
compilers most complient

Look & Feel

program square_root_example
I comments start with an exclamation point.
I you will find data type declarations, couple arithmetic operations
I and an interface that will ask a value for these computations.
implicit none
real :: x, y
intrinsic sqrt ! fortran standard provides many commonly used functions
I command line interface. ask a number and read it in
write (*,*) 'give a value (number) for x:'
read (*,*) x
y=x**2+1 I power function and addition arithmetic
write (*,*) 'given value for x:', X
write (*,*) 'computed value of x**2 + 1:', y
I print the square root of the argument y to screen
write (*,*) 'computed value of sqrt(x**2 + 1):', sqrt(y)
end program square_root_example

Compiling and linking

source code file

(.f90, .f, .f95)
. . Y
include files .
combiler compiler output
P (optional)
modules A

object code (.0)

y

) 4

libraries

\
//////;;ker hnkerputput
__ (optional)
\

y

executable

Variables

Variables must be declared at the

implicit none
beginning of the program or

integer :: no@

|

real :: a, b DIEEEEUTE Y,
real :: rl ~\
complex :: C The intrinsic data types in Fortran are
complex :: imag_number=(0.1, 1.9) INTEGER, REAL, COMPLEX,
character(len=80) :: place CHARACTER and LOGICAL

character(len=80) :: name='james bond’
logical :: test@ = .true.
logical :: testl = .false.
real, parameter :: pi=3.14159

/

They can also be given a value at
declaration

Constants defined with the
PARAMETER clause — they cannot be
altered after their declaration

i\

Assignment statements

program numbers

implicit none
integer :: i
real :: r

Automatic change of representation,
works between all numeric intrinsic

complex :: ¢, cc data types
i=7

r = 1.618034

c = 2.7182818 !same as c¢ = cmplx(2.7182818)

cc = r*(1,1)

write (*,*) i, r, c, cc
end program

Output (one integer and real and two complex values) :
7 1.618034 (2.718282, 0.000000) (1.618034, 1.618034)

How can | convert numbers to
character strings and vice versa? See
“internal 1/0” in the File 1/O lecture.

Arrays

integer, parameter :: m = 100, n = 500
integer :: idx(m)
real :: vector(0:n-1) (

real :: matrix(m, n) o

character (len = 890) :: screen(24)

By default, indexing starts from 1 }

I or, equivalently,

integer, dimension(m) :: idx

real, dimension(@:n-1) :: vector

real, dimension(m, n) :: matrix
character(len=80), dimension(24) :: screen

Operators

.gt. or >
.ge. or >=

greater than
greater than or equal to

» Arithmetic » Logical operators
real :: x, y .nhot. I logical negation
integer :: i .and. I logical conjunction
x=2.0**(-i) ! power function .or. I logical inclusive
x=x*real(i) ! multiplication and type disjunction
change

xX=x/2.0 I division
i=i+l I addition
i=i-1 I subtraction
» Relational
At. or < I less than
.le. or «= I less than or equal to
.eq. or == ! equal to
.he. or /= I not equal to

I

I

Control structures: conditionals

program test_if

implicit none

real :: x,y,eps,t
write(*,*)' give x and y :'
r‘ead(*)*) X.’ y

if (abs(x) > 0.0) then
t=y/x

else
write(*,*)'division by zero'
t=0.0

end if

write(*,*)' y/x = ',t

end program

Conditionals example

program placetest
implicit none
logical ::
real :: x,y

in_squarel, in_square2

[y

write(*,*) 'give point coordinates x and y'

in_square2 = (x >= 1.

if (in_squarel .and.
write(*,*) ‘point
else if (in_squarel)
write(*,*) ‘point

in_squarel = (x >= 0. .and. x <= 2. .and. y >= 0. .and. y <= 2.)
.and. x <= 3. .and. y >= 1. .and. y <= 3.)
in_square2) then I inside both
within both squares’
then I inside square 1 only
inside square 1°
then I inside square 2 only

else if (in_square2)
write(*,*) ‘point
else
write(*,*) ‘point
end if
end program placetest

inside square 2°
I both are .false.
outside both squares’

v

Control structures: loops

I loop with an integer counter (count controlled)
integer :: i, stepsize, numberofpoints

integer, parameter :: max_points=100000

real :: x_coodinate(max_points), x, totalsum

stepsize=2

do i = 1, max_points, stepsize
x_coordinate(i) = i*stepsize*0.05

end do

I condition controlled loop
totalsum = 0.0
read(*,*) x
do while (x > 0)
totalsum = totalsum + x
read(*,*) x
end do

Control structures: loops

I do loop without loop control

real :: x, totalsum, eps
totalsum = 0.0
do

read(*,*) x
if (x < @) then
exit I exit the loop

else if (x > upperlimit) then
cycle

I do not execute any statements but
I cycle back to the beginning of the loop
totalsum + Xx

end if

totalsum =
end do

Control structures example

program gcd
I computes the greatest common divisor, euclidean algorithm
implicit none
integer :: m, n, t
write(*,*)' give positive integers m and n :
read(*,*) m, n
write(*,*)'m:', m," n:', n
positive_check: if (m > @ .and. n > @) then
main_algorithm: do while (n /= 0)
t = mod(m,n) /)
m=n Labels can be given to
n=t . control structures and used

end do main_algorithm in conjunction with e.g. exit
write(*,*)'greatest common divisor: ',m and cycle statements

else
write(*,*) 'negative value entered’
end if positive_check
end program gcd

J

Control structures: select case

» SELECT CASE statements
matches the entries of a
list against the case index ~ [7e8er :f &
ogical :: is_prime_number

Only one found match is
select case (i)

allowed case (2,3,5,7)
Usually arguments are is_prime_number = .true.
. case (1,4,6,8:10)
character strings or is_prime_number = .false.
integers case default
is_prime_number=test_prime_number (i)

DEFAULT branch if no end select
match found

Source code remarks

» A variable name can be no longer than 31| characters
containing only letters, digits or underscore

must start with a letter
» Maximum row length is 132 characters

» There can be max 39 continuation lines

if a line is ended with ampersand (&), the line continues onto
the next line

» No distinction between lower and uppercase characters

character strings are case sensitive

Source code remarks

I character strings are case sensitive
character(len=32) :: chl, ch2
logical :: ans

chli = 'a’

ch2 = ‘A’

ans = chl .eq. ch2

write(*,*) ans I output from that write statement is: f

I when strings are compared

I the shorter string is extended with blanks

write(*,*) 'a' .eq. 'a ' loutput: t

write(*,*) 'a' .eq. ' a’ loutput: f

I statement separation: newline and semicolon, ;
semicolon as a statement separator

a=a*b; c=d*¥*a

the above is equivalent to following two lines

a=a%*hb

c = d¥*a

Structured programming

» Structured programming based on program sub-units
(functions, subroutines and modules) enables
testing and debugging separately
re-use of code
improved readability

re-occurring tasks

» The key to success is in well defined data structures and
scoping, which lead to clean procedure interfaces

What are procedures?

» With procedures we mean subroutines and functions

» Subroutines exchange data through its argument lists
call mySubroutine(argl, arg2, arg3)

» Functions return a value
value = myFunction(argl, arg2)

» Both can also interact with the rest of the program
through module (global) variables

Declaration

[TYPE] FUNCTION func(argl, SUBROUTINE sub(argl, arg2,...
arg2 RESULT(arg3
82,) I (arg3)] [declarations]
[declarations] [statements]

[statements]
END SUBROUTINE sub

END FUNCTION func .
» Call convention

» Call convention CALL sub(argl, arg2,...)

res = func(argl, arg2, ...)

Declaration

real function dist(x,y)
implicit none

real :: x, y

dist = sqrt(x**2 + y**2)
end function dist

program do_something

r=dist(x,y)

subroutine dist(x,y,d)
implicit none
real :: x, y, d
d=sqrt(x**2+y**2)
end subroutine dist

program do_something

call dist(x,y,r)

Procedure arguments

» Call by reference: Means that only the memory addresses
of the arguments are passed to the called procedure

any change to argument changes the actual argument
» Compiler can check the argument types only if the

interface is explict, i.e. compiler has information about the
called procedure at compile time.

INTENT keyword adds readability and possibility for more
compile-time error catching

INTENT keyword

broutine foo(x,y,z)

» Declares how formal argument suProutin
implicit none

is intended for transferring a real, intent(in):: x
value real, intent(inout) :: y
real, intent(out) 11 Z
in: the value of the argument
cannot be changed x=10 ! compilation error
. £ th y=10 ! correct
out: the value of the argument 2=y*x | correct
must be provided end subroutine foo

inout (default)

» Compiler uses INTENT for
error checking and
optimization

Summary

» Fortran is — despite its long history - a modern
programming language especially for scientific computing
Versatile, easy to learn, powerful
» In our first encounter, we discussed
Variables & data types
Control structures: loops & conditionals

Operators

Program structuring with functions and subroutines

Programming assignment I

The Jacobi iterative scheme is a way of solving the 2D Poisson
equation V2V=[3 by iteratively update the value of a 2D arrayV
as

View(i)=[V(i- L)V (i+ L) +V (i.j- 1) +V (i + 1)-B (i) 14
Until convergence has been reached (i.e.V,, andV_, are
sufficiently close to each other).

VI‘I =10

\4 P
H l I
|
|
Write a Fortran program that conducts the Jacobi iterative

scheme. Return the program by email together with sample
output by the next lecture.

