
554027 Modern Fortran

Programming for Chemists and

Physicists

Dr Pekka Manninen

manninen@cray.com

About this course

 Lectures: The course consists of 14 hours of face-to-face
learning sessions. Lectures in Period III on Mondays from 2.15
pm to 4.00 pm (Jan 13 – Feb 24, 2014).

 Room: Computer classroom D211, Physicum building,
Kumpula campus.

 Credits: 2 ECTS. Completing the programming assignments
given after each lecture is required for the credits.

 Literature: Metcalf, Reid, Cohen: Modern Fortran Explained
(Oxford University Press, 2011); Haataja, Rahola, Ruokolainen:
Fortran 95/2003 4th ed. (CSC, 2007). Lecture notes and other
materials will be available online.
 Lectures have their origin on the numerous Fortran courses given at

CSC by PM and other people (Sami Saarinen, Sami Ilvonen,...)

 Course page:
http://www.chem.helsinki.fi/~manninen/fortran2014

Course outline (discussion)

Session Topics

Jan 13 Basic syntax, program controls, structured programming

Jan 20 Modular programming; Fortran arrays

Jan 27 Input/output: formatting, writing/reading files

Feb 3 Derived datatypes, procedure interfaces, operator overloading

Feb 10 Procedure attributes, parameterized types, abstract interfaces, procedure

pointers, interoperability with C language

Feb 17 Parallel programming with Fortran coarrays

Feb 24 Extended types, polymorphism, type-bound procedures

Web resources

 CSC’s Fortran95/2003 Guide (in Finnish) for free
http://www.csc.fi/csc/julkaisut/oppaat

 Fortran wiki: a resource hub for all aspects of Fortran
programming
http://fortranwiki.org

 GNU Fortran online documents
http://gcc.gnu.org/onlinedocs/gcc-4.8.1/gfortran

 Code examples
http://www.nag.co.uk/nagware/examples.asp
http://www.personal.psu.edu/jhm/f90/progref.html
http://www.physics.unlv.edu/~pang/cp_f90.html

Lecture I: Getting started with

Fortran

Outline

 First encounter with Fortran

 Variables and their assignment

 Control structures

Why learn Fortran?

 Well suited for numerical computations

 Likely over 50% of scientific applications are written in Fortran

 Fast code (compilers can optimize well)

 Handy array data types

 Clarity of code

 Portability of code

 Optimized numerical libraries available

Fortran through the ages

 John W. Backus et al (1954): The IBM Mathematical

Formula Translating System

 Early years development: Fortran II (1958), Fortran IV

(1961), Fortran 66 & Basic Fortran (1966)

 Fortran 77 (1978)

 Fortran 90 (1991) major revision, Fortran 95 (1995) a

minor revision to it

Fortran through the ages

 Fortran 2003: major revision, adding e.g. object-oriented

features

 ”Fortran 95/2003” is the current de facto standard

 The latest standard is Fortran 2008 (approved 2010), a

minor upgrade to 2003

 All relevant compilers implement fully the 2003 standard

 Fortran 2008 features still under construction, Cray and Intel

compilers most complient

program square_root_example
! comments start with an exclamation point.
! you will find data type declarations, couple arithmetic operations
! and an interface that will ask a value for these computations.
 implicit none
 real :: x, y
 intrinsic sqrt ! fortran standard provides many commonly used functions
 ! command line interface. ask a number and read it in
 write (*,*) 'give a value (number) for x:'
 read (*,*) x
 y=x**2+1 ! power function and addition arithmetic
 write (*,*) 'given value for x:', x
 write (*,*) 'computed value of x**2 + 1:', y
 ! print the square root of the argument y to screen
 write (*,*) 'computed value of sqrt(x**2 + 1):', sqrt(y)
end program square_root_example

Look & Feel

compiler

linker

source code file
(.f90, .f, .f95)

modules

object code (.o)

libraries

executable

include files
compiler output
 (optional)

linker output
 (optional)

Compiling and linking

implicit none
integer :: n0
real :: a, b
real :: r1
complex :: c
complex :: imag_number=(0.1, 1.0)
character(len=80) :: place
character(len=80) :: name='james bond'
logical :: test0 = .true.
logical :: test1 = .false.
real, parameter :: pi=3.14159

Variables

Constants defined with the
PARAMETER clause – they cannot be
altered after their declaration

Variables must be declared at the
beginning of the program or
procedure

They can also be given a value at
declaration

The intrinsic data types in Fortran are
INTEGER, REAL, COMPLEX,
CHARACTER and LOGICAL

program numbers
 implicit none
 integer :: i
 real :: r
 complex :: c, cc
 i = 7
 r = 1.618034
 c = 2.7182818 !same as c = cmplx(2.7182818)
 cc = r*(1,1)
 write (*,*) i, r, c, cc
end program

Output (one integer and real and two complex values) :
7 1.618034 (2.718282, 0.000000) (1.618034, 1.618034)

Assignment statements

How can I convert numbers to
character strings and vice versa? See
“internal I/O” in the File I/O lecture.

Automatic change of representation,
works between all numeric intrinsic
data types

Arrays

integer, parameter :: m = 100, n = 500
integer :: idx(m)
real :: vector(0:n-1)
real :: matrix(m, n)
character (len = 80) :: screen(24)

! or, equivalently,

integer, dimension(m) :: idx
real, dimension(0:n-1) :: vector
real, dimension(m, n) :: matrix
character(len=80), dimension(24) :: screen

By default, indexing starts from 1

Operators

 Arithmetic
real :: x, y
integer :: i
x=2.0**(-i) ! power function
x=x*real(i) ! multiplication and type
 change
x=x/2.0 ! division
i=i+1 ! addition
i=i-1 ! subtraction

 Relational
.lt. or < ! less than
.le. or <= ! less than or equal to
.eq. or == ! equal to
.ne. or /= ! not equal to
.gt. or > ! greater than
.ge. or >= ! greater than or equal to

 Logical operators
.not. ! logical negation
.and. ! logical conjunction
.or. ! logical inclusive
 disjunction

Control structures: conditionals

program test_if
 implicit none
 real :: x,y,eps,t

 write(*,*)' give x and y :'
 read(*,*) x, y

 if (abs(x) > 0.0) then
 t=y/x
 else
 write(*,*)'division by zero'
 t=0.0
 end if
 write(*,*)' y/x = ',t
end program

Fortran95

program placetest
 implicit none
 logical :: in_square1, in_square2
 real :: x,y
 write(*,*) 'give point coordinates x and y'
 read (*,*) x, y
 in_square1 = (x >= 0. .and. x <= 2. .and. y >= 0. .and. y <= 2.)
 in_square2 = (x >= 1. .and. x <= 3. .and. y >= 1. .and. y <= 3.)
 if (in_square1 .and. in_square2) then ! inside both
 write(*,*) ‘point within both squares’
 else if (in_square1) then ! inside square 1 only
 write(*,*) ‘point inside square 1’
 else if (in_square2) then ! inside square 2 only
 write(*,*) ‘point inside square 2’
 else ! both are .false.
 write(*,*) ‘point outside both squares’
 end if
end program placetest

Conditionals example

1

2

! loop with an integer counter (count controlled)
integer :: i, stepsize, numberofpoints
integer, parameter :: max_points=100000
real :: x_coodinate(max_points), x, totalsum
...
stepsize=2
do i = 1, max_points, stepsize
 x_coordinate(i) = i*stepsize*0.05
end do

! condition controlled loop
totalsum = 0.0
read(*,*) x
do while (x > 0)
 totalsum = totalsum + x
 read(*,*) x
end do

Fortran95

Control structures: loops

! do loop without loop control

real :: x, totalsum, eps
totalsum = 0.0
do
 read(*,*) x
 if (x < 0) then
 exit ! exit the loop
 else if (x > upperlimit) then
 cycle ! do not execute any statements but
 ! cycle back to the beginning of the loop
 end if
 totalsum = totalsum + x
end do

Control structures: loops

program gcd
! computes the greatest common divisor, euclidean algorithm
 implicit none
 integer :: m, n, t
 write(*,*)' give positive integers m and n :'
 read(*,*) m, n
 write(*,*)'m:', m,' n:', n
 positive_check: if (m > 0 .and. n > 0) then
 main_algorithm: do while (n /= 0)
 t = mod(m,n)
 m = n
 n = t
 end do main_algorithm
 write(*,*)'greatest common divisor: ',m
 else
 write(*,*)'negative value entered'
 end if positive_check
end program gcd

Fortran95

Control structures example

Labels can be given to
control structures and used
in conjunction with e.g. exit
and cycle statements

...
integer :: i
logical :: is_prime_number
...
select case (i)
 case (2,3,5,7)
 is_prime_number = .true.
 case (1,4,6,8:10)
 is_prime_number = .false.
 case default
 is_prime_number=test_prime_number(i)
end select
...

Control structures: select case

 SELECT CASE statements

matches the entries of a

list against the case index

 Only one found match is

allowed

 Usually arguments are

character strings or

integers

 DEFAULT branch if no

match found

Source code remarks

 A variable name can be no longer than 31 characters

 containing only letters, digits or underscore

 must start with a letter

 Maximum row length is 132 characters

 There can be max 39 continuation lines

 if a line is ended with ampersand (&), the line continues onto

the next line

 No distinction between lower and uppercase characters

 character strings are case sensitive

! character strings are case sensitive
character(len=32) :: ch1, ch2
logical :: ans
ch1 = 'a'
ch2 = ‘A'
ans = ch1 .eq. ch2
write(*,*) ans ! output from that write statement is: f
! when strings are compared
! the shorter string is extended with blanks
write(*,*) 'a' .eq. 'a ' !output: t
write(*,*) 'a' .eq. ' a' !output: f
! statement separation: newline and semicolon, ;
! semicolon as a statement separator
a = a * b; c = d**a
! the above is equivalent to following two lines
a = a * b
c = d**a

Fortran95

Source code remarks

Structured programming

 Structured programming based on program sub-units

(functions, subroutines and modules) enables

 testing and debugging separately

 re-use of code

 improved readability

 re-occurring tasks

 The key to success is in well defined data structures and

scoping, which lead to clean procedure interfaces

What are procedures?

 With procedures we mean subroutines and functions

 Subroutines exchange data through its argument lists
call mySubroutine(arg1, arg2, arg3)

 Functions return a value

value = myFunction(arg1, arg2)

 Both can also interact with the rest of the program

through module (global) variables

Declaration

Function Subroutine

[TYPE] FUNCTION func(arg1,
arg2,) [RESULT(arg3)]

 [declarations]
 [statements]

END FUNCTION func

 Call convention
res = func(arg1, arg2, ...)

SUBROUTINE sub(arg1, arg2,...)

 [declarations]
 [statements]

END SUBROUTINE sub

 Call convention
CALL sub(arg1, arg2,...)

real function dist(x,y)
 implicit none
 real :: x, y
 dist = sqrt(x**2 + y**2)
end function dist

program do_something
...
 r=dist(x,y)
...

subroutine dist(x,y,d)
 implicit none
 real :: x, y, d
 d=sqrt(x**2+y**2)
end subroutine dist

program do_something
 ...
 call dist(x,y,r)
 ...

Declaration

Procedure arguments

 Call by reference: Means that only the memory addresses

of the arguments are passed to the called procedure

 any change to argument changes the actual argument

 Compiler can check the argument types only if the

interface is explict, i.e. compiler has information about the

called procedure at compile time.

 INTENT keyword adds readability and possibility for more

compile-time error catching

INTENT keyword

 Declares how formal argument

is intended for transferring a

value

 in: the value of the argument

cannot be changed

 out: the value of the argument

must be provided

 inout (default)

 Compiler uses INTENT for

error checking and

optimization

subroutine foo(x,y,z)
 implicit none
 real, intent(in) :: x
 real, intent(inout) :: y
 real, intent(out) :: z

 x=10 ! compilation error
 y=10 ! correct
 z=y*x ! correct
end subroutine foo

Summary

 Fortran is – despite its long history - a modern

programming language especially for scientific computing

 Versatile, easy to learn, powerful

 In our first encounter, we discussed

 Variables & data types

 Control structures: loops & conditionals

 Operators

 Program structuring with functions and subroutines

Programming assignment I

The Jacobi iterative scheme is a way of solving the 2D Poisson
equation ∇2V=β by iteratively update the value of a 2D array V
as
 Vnew(i,j)=[V(i-1,j)+V(i+1,j)+V(i,j-1)+V(i,j+1)-β(i,j)]/4
Until convergence has been reached (i.e. Vnew and Vold are
sufficiently close to each other).

Write a Fortran program that conducts the Jacobi iterative
scheme. Return the program by email together with sample
output by the next lecture.

