
Lecture III: Input/output

Outline

 Input / output formatting

 Internal I/O & command-line parsing

 Opening, writing, reading, closing files

 Formatted vs. binary I/O

 Stream I/O

 Asynchronous I/O

Input/Output formatting

 To prettify output and to make it human-readable, we use

FORMAT descriptors in connection with the WRITE

statement

 Although less often used nowadays, it can also be used

with READ to input data at fixed line positions and using

predefined field lengths

 Use either through FORMAT statements, CHARACTER

variable or embedded in READ / WRITE fmt keyword

Data type FORMAT
descriptors

Examples

Integer Iw, Iw.m WRITE(*,'(I5)') J
WRITE(*,'(I5.3)') J
WRITE(*,'(I0)') J

Real (decimal
and exponential
forms,
auto-scaling)

Fw.d
Ew.d
Gw.d

WRITE(*,'(F7.4)') R
WRITE(*,'(E12.3)') R
WRITE(*,'(G20.13)') R

Character A, Aw WRITE(*,'(A)') C

Logical Lw WRITE(*,'(L2)') L

w=width of the output field, d=number of digits to the right of decimal point,
m=minimum number of characters to be used.
Variables: Integer :: J, Real :: R, Character :: C, Logical :: L

Output formatting

Output formatting: miscellaneous

 With complex numbers provide format for both real and

imaginary parts:
COMPLEX :: Z
WRITE (*,'(F6.3,2X,F6.3)') Z

 Line break and tabbing:
WRITE (*,'(F6.3,/,F6.3)') X, Y
WRITE (*,'(I5,T20,I5)') I, J

 Dynamic sizing with I0 and G0 edit descriptors

 It is possible that an edit descriptor will be repeated a

specified number of times
WRITE (*,'(5I8)')
WRITE (*,'(3(I5,F8.3))')

Internal I/O

 Often it is necessary to filter out data from a given

character string

 Or to pack values into a character string

 Fortran internal I/O with READ & WRITE becomes handy

 No actual files (or channels) are involved at all

Internal I/O examples

 Extract a number from a given character string
CHARACTER(LEN=13) :: CL ='Time step# 10'
INTEGER :: ISTEP
READ(CL,fmt='(10X,I3)') ISTEP

 Write data to a character string
 INTEGER :: njobs

CHARACTER(LEN=60) :: CL
WRITE(CL,'(A,I0)') 'The number of jobs completed = ', njobs

Command line input

 In many cases, it is convenient to give parameters for the

program directly during program launch

 Instead of using a parser, reading from an input file etc.

 Fortran way for this is

 COMMAND_ARGUMENT_COUNT() : compute the number of

user-provided arguments

 GET_COMMAND_ARGUMENT(integer i, character
arg(i)) extract the argument from position i

 You will need internal I/O to convert e.g. integer-valued

arguments into values of integer variables

Command line input

 Example: reading in two integer values from the command

line

 The (full) program should be launched as (e.g.)
% ./a.out 100 100 subroutine read_command_line(height, width)

 integer, intent(out) :: height, width
 character(len=10) :: args(2)
 integer :: n_args, i
 n_args = command_argument_count()
 if (n_args /= 2) then
 write(*,*) ' Usage : ./exe height width'
 call abort()
 end if
 do i = 1, 2
 call get_command_argument(i,args(i))
 args(i) = trim(adjustl(args(i)))
 end do
 read(args(1),*) height
 read(args(2),*) width
end subroutine read_command_line

Opening & closing files

 Writing to or reading from a file is similar to writing onto

a terminal screen (*) or reading from a keyboard, but

 File must be opened with an OPEN statement, in which the

unit number and (optionally) the file name are given

 Subsequent writes (or reads) must to refer to the given unit

number

 File should be closed at the end

Opening & closing files

 The syntax is (the brackets [] indicate optional keywords

or arguments)

 OPEN([unit=]iu, file='name' [, options])
CLOSE([unit=]iu [, options])

 For example
OPEN(10, file= 'output.dat', status='new')
CLOSE(unit=10, status='keep')

Opening & closing files

 The first parameter is the unit number

 The keyword unit= can be omitted

 The unit numbers 0, 5 and 6 are predefined

 0 is output for standard (system) error messages

 5 is for standard (user) input

 6 is for standard (user) output

 These units are opened by default and should not be re-

opened nor closed by the user

Opening & closing files

 The default input/output unit can be referred with a star:
WRITE(*, ...)
READ(*, ...)

 Note that these are not necessarily the same as the stdout and

stdin unit numbers 6 and 5

 If the file name is omitted in the OPEN, the file name will

based on unit number being opened, e.g. for unit=12 this

usually means the filename ’fort.12’

File opening options

 status : existence of the file

 'old', 'new', 'replace', 'scratch', 'unknown'

 position : offset, where to start writing

 'append'

 action : file operation mode

 'write', 'read', 'readwrite'

 form : text or binary file

 'formatted', 'unformatted'

File opening options

 access : direct or sequential file access

 'direct', 'sequential', 'stream',

 iostat : error indicator, (output) integer

 Non-zero only upon an error

 asynchronous: whether to try or not asynchronous I/O

 ‘yes’ or ‘no’

 err : the label number to jump upon error

 recl : record length, (input) integer

 For direct access files only

 Warning (check): may be in bytes or words

File opening: file properties

 Use INQUIRE statement to find out information about

 file existence

 file unit open status

 various file attributes

 The syntax has two forms, one based on file name, the

other for unit number
INQUIRE(file=’name’, options ...)
INQUIRE(unit=iu, options ...)

File opening: file properties

 exist : does file exist ? (LOGICAL)

 opened : is file / unit opened ? (LOGICAL)

 form : ’formatted’ or ’unformatted’ (CHAR)

 access : ’sequential’ or ’direct’ or ’stream’ (CHAR)

 action : ’read’, ’write’, ’readwrite’ (CHAR)

 recl : record length (INTEGER)

 size : file size in bytes (INTEGER)

File opening: file properties

 Find out about existence of a file

LOGICAL :: file_exist

INQUIRE (FILE='foo.dat', EXIST=file_exist)
IF (.NOT. file_exist) THEN
 WRITE(*,*) 'The file does not exist'
ELSE

 ! Do something with the file 'foo.dat'
ENDIF

File writing and reading

 Writing to and reading from a file is done by giving the

corresponding unit number (iu) as a parameter :
WRITE(iu,*) str
WRITE(unit=iu, fmt=*) str
READ(iu,*) str
READ(unit=iu, fmt=*) str

 Formats and other options can be used as needed

 'fmt' is applicable to formatted, text files only

The star format (*) indicates list-
directed output (i.e. programmer does
not choose the input/output styles)

Formatted vs. unformatted files

 Text or formatted files are

 Human readable

 Portable i.e. machine independent

 Binary or unformatted files are

 Machine readable only, not portable

 Much faster to access than formatted files

 Suitable for large amount of data due to reduced file sizes

 Internal data representation used for numbers, thus no number

conversion, no rounding of errors compared to formatted data

Unformatted I/O

 Write to a sequential binary file
REAL rval
CHARACTER(len = 60) string
OPEN(10,file='foo.dat',form='unformatted')
WRITE(10) rval
WRITE(10) string
CLOSE(10)

 No FORMAT descriptors allowed

 Reading similarly
READ(10) rval
READ(10) string

Stream I/O

 A binary file write adds extra record delimiters (hidden

from programmer) to the beginning and end of records

 In Fortran 2003 using access method 'stream' avoids this

and implements a C-like approach

 One should move to use stream I/O for efficiency and

portability

 Create a stream (binary) file
OPEN(10,file='my_data.dat',access='stream')

Asynchronous I/O

 Both writing and reading can be asynchronous i.e. other

statements being executed while I/O in progress

 It is system dependent whether I/O is asynchronous for real

OPEN(10, ..., asynchronous=’yes’)
WRITE(10,..., id=id, asynchronous=’yes’) A
CALL do_something(....) ! Not involving A here
WAIT(10, id=id) ! Blocks here until A has been written
CALL do_something(...) ! OK to use A here

Asynchronous I/O

 If the asynchronous file access is performed in a procedure

other than the one called for OPEN, the data involved has

to be declared with ”asynchronous” attribute

OPEN(10, ..., asynchronous=’yes’)
CALL async_write(10, A, id)
CALL do_something_else_here()
WAIT(10, id=id)
...
SUBROUTINE async_write(iu, data, id)
 INTEGER, INTENT(IN) :: iu
 INTEGER, INTENT(IN), DIMENSION(:), ASYNCHRONOUS :: data
 INTEGER, INTENT(OUT) :: id
 ...
 WRITE(iu, id=id, asynchronous=’yes’) data
 ...
END SUBROUTINE async_write

Asynchronous I/O

 An alternative for calling WAIT is to periodically call

INQUIRE to check the status of the operation and in

the meantime keep on doing something else

 Not necessarily supported in all platforms but the INQUIRE

statement equals to WAIT

LOGICAL :: status
...
OPEN(10, ..., asynchronous=’yes’)
WRITE(10,..., id=id, asynchronous=’yes’) A
DO WHILE (!status)
 CALL do_something(....) ! Not involving A
 INQUIRE (10, id=id, pending=status)
END DO

Summary

 Input/Output formatting

 Files: communication between a program and the

outside world

 Opening and closing a file

 Data reading & writing

 Use unformatted (binary) I/O for all except text files

 Stream I/O

 Asynchronous I/O may be beneficial with large datasets

 Internal I/O & command-line parsing

Programming assignment

The files gol.f95 and gol_io.f95 contain an implementation of the

”Game of Life”, a famous cellular automaton, read

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

The I/O module in gol_io.f95 is missing the code for writing the

GoL boards into image files (here in .pbm format) and for reading

in the command-line input. Complete the missing pieces of code.

For how to write .pbm images, see

http://en.wikipedia.org/wiki/Netpbm_format Feel free to

implement it in some other picture format!

Complete the code and run it to see how the automaton evolves.

Return the completed code together with some sample output

(images/animations).

