
Lecture IV: Derived data types.

Yet more about procedures.

Outline of the first part

 Recalling Fortran built-in data types

 Rationale behind derived data types

 Data type declaration and visibility

Fortran built-in types

 Standard Fortran already supports a wide variety of

fundamental data types to represent integers, floating

point numbers (real), truth values (logical) and variable

length character strings

 Each of these built-in types may have declared as multi-

dimensional array

 Representation of reals and integers can be controlled

through kind parameter (e.g. 8 or 4)

 Numerical precision

 Memory consumption, CPU register considerations

A few words about numerical precision

 The variable representation method (precision) may be

declared using the KIND statement

! selected_int_kind(r)
! selected_real_kind(p)
! selected_real_kind(p,r)

integer, parameter :: short=selected_int_kind(4)
integer, parameter :: double=selected_real_kind(12,100)
integer (kind=short) :: index
real (kind=double) :: x,y,z
complex (kind=double) :: c

x=1.0_double; y=2.0_double * acos(x)

Integer between -10r < n < 10r

Real number accurate to p decimals

A real number between
-10100 < x < 10100, accurate to 12
decimals

PROGRAM Precision_Test
implicit none

integer, parameter :: sp = selected_real_kind(6,30), &
 dp = selected_real_kind(10,200)
real(kind=sp) :: a
real(kind=dp) :: b
write(*,*) sp, dp, kind(1.0), kind(1.0_dp)
write(*,*) kind(a), huge(a), tiny(a), range(a), precision(a)
write(*,*) kind(b), huge(b), tiny(b), range(b), precision(b)

end program precision_test

output:
 4 8 4 8
 4 3.4028235e+38 1.1754944e-38 37 6
 8 1.797693134862316e+308 2.225073858507201e-308 307 15

Numerical precision

Module ISO_FORTRAN_ENV

MODULE prec

 USE ISO_FORTRAN_ENV, ONLY : INT32, INT64, REAL32, REAL64

 IMPLICIT NONE

 PRIVATE

 INTERGER, PARAMETER :: i4 = INT32 &

 i8 = INT64 &

 r4 = REAL32 &

 r8 = REAL64

 PUBLIC :: i4, i8, r4, r8

END MODULE prec

Other intrinsic functions related to numerical precision

 KIND(A) Returns the kind of the supplied
 argument
 TINY(A) The smallest positive number
 HUGE(A) The largest positive number
 EPSILON(A) The smallest positive number added to
 1.0 returns a number just greater than
 1.0
 PRECISION(A) Decimal precision
 DIGITS(A) Number of significant digits
 RANGE(A) Decimal exponent
 MAXEXPONENT(A) Largest exponent (of the kind(A))
 MINEXPONENT(A) Smallest exponent (of the kind(A))

Numerical precision

What is derived data type?

 Derived data type is a data structure composed of built-in

data types and possibly other derived data types

 Equivalent to structs in C programming language

 Derived type is defined in the variable declaration section

of programming unit

 Not visible to other programming units

 Unless defined in a module and used via USE clause, which is most

often the preferred way

Derived data types – rationale

 Properly constructed data types make the program more

readable, lead to clean interfaces and less errors

 Variables used in the same context should be grouped

together, using modules and derived data types

 Data layout computational efficiency should be kept in

mind when diving into object oriented programming in

Fortran (or any other language)

Data type declaration

 Type declaration
TYPE playertype
 CHARACTER (LEN=30) :: name
 INTEGER :: number, goals, assists
END TYPE playertype

 Declaring variables using a derived data type
TYPE(playertype) :: ville, pekka
TYPE(playertype), DIMENSION(30) :: players

Accessing data types

 Initialization
 ville%name = ‘Ville Nieminen'

ville%number = 17
ville%goals = 10
ville%assists = 8

 Alternatively
 ville = playertype(‘Ville Nieminen', 17, 10, 8)

 Vector of derived data type: element-wise addressing
players(1)%name = 'Pekka Saravo'
players(1)%number = 6
players(1)%goals = 2
players(1)%assists = 4

Nested derived types

 Declaration of a derived type using another derived type
TYPE hockeyteam
 CHARACTER (LEN=80) :: name
 TYPE(playertype) :: players(30)
 TYPE(goalietype) :: goalies(3)
END TYPE hockeyteam

 Declaring variables:
TYPE(hockeyteam) :: tappara, ilves, karpat

 Initialization / access example:
tappara%name = 'Tappara'

 tappara%players(2)%name = 'Ville Nieminen'

 tappara%players(2)%number = 17

Visibility of derived data types

 When declared in the same programming unit derived

data types are visible to that unit only

 and subunits under CONTAINS statement

 When declared in a module unit, a derived data type can

be accessed outside the module through the USE

statement

Outline of the second part

 Pointers to arrays

 Generic procedures

 Operator overloading

Pointers to arrays

 The POINTER attribute enables to create array (or

scalar) aliasing variables

 It can refer to a variable that is has either an attribute TARGET

 It can also refer to another variable with the pointer attribute

 A pointer variable can also be a sole variable itself

 A desired shape given with the ALLOCATE statement

 C programmers: ”pointer” has a different meaning in C

and Fortran

Pointers to arrays

 A POINTER can refer to an already allocated memory

region

integer, pointer :: p_x(:) => null()
integer, target :: x(1000)
...
p_x => x
p_x => x (2 : 300)
p_x => x (1 : 1000 : 5)
...
p_x(1) = 0
nullify(p_x)

Disconnects p_x’s connection to x

Pointer, initialized to point to nothing

This would change also x(1) to 0

Pointers provide a neat way for array
sections

Now p_x equivalent to x

Pointers to arrays

 Examples with a 2D array

integer :: n=100, m=200
real, pointer :: p_mat (:,:), p_vec(:), p_diag(:)
real, target :: mat (n,m)

p_mat => mat
p_mat => mat (1:50 , 1:50)
p_mat => mat (10:100:10 , 10::5)
p_vec(1:n*m) => mat
p_diag => p_vec(::n+1)

Pointers to arrays

 Whether a POINTER points to anything, use

ASSOCIATED – function to check :

real, pointer :: p_mat (:,:) => null ()
...
if (associated (p_mat)) then
 print *,’points to something’
else
 print *,’points to nothing’
end if

Generic procedures

 In Fortran, a procedure must know the data types of its

arguments as well as local variables

 Procedures which perform similar actions but for

different data types can be defined as generic procedures

 Procedures are called using the generic name and compiler uses

the correct procedure based on the argument number, type

and dimensions

 Compiler error if no matching procedure found

 Generic name is defined in an INTERFACE section

MODULE swapmod
 IMPLICIT NONE
 INTERFACE swap
 MODULE PROCEDURE swap_real, swap_char
 END INTERFACE
CONTAINS
 SUBROUTINE swap_real(a, b)
 REAL, INTENT(INOUT) :: a, b
 REAL :: temp
 temp = a; a = b; b = temp
 END SUBROUTINE
 SUBROUTINE swap_char(a, b)
 CHARACTER, INTENT(INOUT) :: a, b
 CHARACTER :: temp
 temp = a; a = b; b = temp
 END SUBROUTINE
END MODULE swapmod

Generic procedures example

PROGRAM switch
 USE swapmod
 IMPLICIT NONE
 CHARACTER :: n,s
 REAL :: x,y
 n = 'J'
 s = 'S'
 x=10
 y=20
 PRINT *,x,y
 PRINT *,n,s
 CALL swap(n,s)
 CALL swap(x,y)
 PRINT *,x,y
 PRINT *,n,s
END PROGRAM

Operator overloading

 To improve readability of Fortran source code it is

possible to overload existing operators – or even create

ones of your own

 Operator overloading applies to the mathematical

operations like „+‟, „-‟, „*‟, „/‟ and assignment „=‟

 Own operators defined with two dots, e.g.,“.op.”

 Binary operators involve two operands – residing in the

left and right hand sides (LHS & RHS) of the operator

 Unary operator (e.g. minus A) only has one operator (RHS)

Operator overloading

 A practical implementation of operator overloading

usually involve creating a module file where all the

necessary components will be placed

 Derived data TYPE definition of the associated elements

 Creation of appropriate INTERFACE blocks to enable

compiler to map the references to the new operators

 Operator overloading can optionally be implemented to

cover several (intrinsic) data types, or a mixture of types

 All the necessary code fractions are
now placed in a MODULE file

 … and referenced from the user
source code, e.g. :

PROGRAM main

USE overload

TYPE(vector_t) :: x1, x2, out

x1 = vector_t(1,2,3)

x2 = vector_t(10,20,30)

out = x1 + x2

print *,'out=', out%x, out%y, out%z

END PROGRAM main

! The output is:

out= 11.00000 22.00000 33.00000

module overload

type vector_t

 real :: x, y, z

end type vector_t

interface operator(+)

 module procedure vector_add
end interface

contains

 function add(v1, v2) result(v3)

 type(vector_t) :: v3

 type(vector_t), intent(in) ::&
 v1, v2

 v3%x = v1%x + v2%x

 v3%y = v1%y + v2%y

 v3%z = v1%z + v2%z

end function add

end module overload

Overloading summation operator ‘+’

Outline of the third part

 Optional procedure arguments

 SAVEd variables

 Special procedure attributes

 Recursive, Elemental, Pure

Optional procedure arguments

 Procedure arguments

can be defined as

OPTIONAL

 Some predefined default

value used for

arguments not provided

 The presence of the

optional arguments can

be inquired with

PRESENT clause

real function average(x, low, up)
 implicit none
 real, dimension(:), intent(in) :: x
 real, intent(in), optional :: low, up
 real :: a, b
 integer :: i, icount
 a = -huge(a)
 b = huge(b)
 if (present(low)) a = low
 if (present(up)) b = up
 average = 0.0
 icount = 0
 do i = 1, size(x)
 if (x(i) >= a .and. x(i) <= b) then
 average = average + x(i)
 icount = icount + 1
 end if
 end do
 average = average/icount
end function average

Counting an average of a set of real numbers – optionally

numbers outside [low,up] can be omitted from the average. The

function can be called with either 1, 2 or 3 argumets, but the set

of numbers has to be provided.

SAVEd variables

 By default objects in procedures are dynamically allocated

upon invocation

 Only saved variables keep their value from one call to the

next

 SAVE attribute
REAL, SAVE :: a

 Variables assigned with a value upon declaration are equal to

SAVE attribute (C programmers should note this!)
REAL :: a = 1.0

Special attributes for procedures:

RECURSIVE

 Recursion means calling a procedure within itself

 Triggered via RECURSIVE keyword

recursive function factorial(n) result(fac)
 integer, intent(in) :: n
 integer :: fac
 if (n==0) then
 fac=1
 else
 fac=n*factorial(n-1)
 end if
end function factorial

Special attributes for procedures: PURE

 PURE keyword indicates that the function is free of side

effects

 Such as a change in value of an input argument or global

variable

 Intrinsic functions are always pure

 No (external) I/O is allowed in PURE procedures

 Pure procedure must specify intents of its all arguments

 The motivation is efficiency: Enables more aggressive

compiler optimization and parallelization with e.g.

OpenMP

Special attributes for procedures:

ELEMENTAL

 The ELEMENTAL attribute

allows for declaring procedures

that operate element-by-

element

 The argument can be a scalar

or an array of any shape

 This is another way for defining

more general procedures

elemental real function f(x,y)
 real, intent(in) :: x, y
 f = sqrt(x**2 + y**2)
end function f

...
real, dimension(n,n) :: a, b, c
real, dimension(n) :: t, u, v
...
c = f(a,b)
v = f(t,u)

Fortran 95/2003 crash course summary

Variables,

control

structures

Arrays, array

intrinsics

Pointer

aliasing

Procedures

& Modules

Generic

procedures

& special

attributes

File I/O

Derived data

types

Operator

overloading

Programming assignment

The file vec.f95 contains a simple user interface for a

program that performs basic linear algebra operations for

vectors given by the user (here 3D for simplicity). Your

task is to write the module containing the referred

operations.

That is, you should include the definition of a suitable

derived type. Then, implement operations for calculating

the vector length (norm) and sum, substraction and dot

and vector (cross) products between two vectors, and

overload them to match with the syntax in vec.f95.

Placeholders for these in vec_mod.f95.

