
Lecture V: Introduction to parallel

programming with Fortran coarrays

What is parallel computing?

 Serial computing

 Single processing unit (core) is

used for solving a problem

 One task processed at a time

 Parallel computing

 Multiple cores are used for

solving a problem

 Problem is split into smaller

subtasks

 Multiple subtasks are processed

simultaneously

P
r
o
b
l
e
m

c
o
r
e

r
e
s
u
l
t

P
r
o
b
l
e
m

c1

r
e
s
u
l
t

c2

c3

cN

...

Why parallel computing?

 Solve problems faster

 CPU clock frequencies are no longer increasing - speed-up is

obtained by using multiple cores

 Parallel programming is required for utilizing multiple cores

 Solve bigger problems

 Parallel computing may allow application to use more memory

 Apply old models to new length and time scales

 Grand challenges

 Solve problems better

 More precise models

Types of parallel computers

 Shared memory
 all the cores can access the whole memory

 Distributed memory
 all the cores have their own memory

 communication is needed in order to access

the memory of other cores

 Current supercomputers combine the

distributed memory and shared memory

approaches

What are Fortran coarrays about ?

 Adds parallel processing as part of Fortran language

 Only small changes required to convert existing Fortran code

to support a robust and potentially efficient parallelism

 A Partitioned Global Address Space (PGAS) language

 Coarrays implement parallelism over “distributed shared

memory”  potentially massively parallel

 Has been integrated into Fortran 2008 standard

 Only few compilers so far support the syntax

 CCE for real

 Intel tops on MPI

 GNU supports only one image

Coarrays…

 Add only a few new rules to the Fortran language

 Provide mechanisms to allow

 SPMD (Single Program, Multiple Data) style of explicitly parallel

programming

 Data distribution over partitioned memory (you can think

about “distributed shared memory” here)

 Guard against race conditions (in e.g. variable value

assignments) by using synchronization

 Memory management for dynamic shared entities

Execution model

 Upon startup a coarrays program gets replicated into a

number of copies called images (i.e. processes)

 The number of images is usually decided at the execution time

 Each “replica” (image) runs asynchronously in a

loosely/non-coupled way until program controlled

synchronization

 Image’s (local) data are visible within the image only –

except for data declared as special arrays i.e. coarrays

 One-sided data communication enables movement of coarray

data across different images of a program

Time for “Hello World”!

 num_images() returns the number of images in use for this run

(usually set outside the program, by the environment)

 this_image() returns the image number in concern –

numbered from 1 to num_images()

 This program is a trivially parallel i.e. each image does not

explicitly share any data and runs seemingly independently

program hello_world

 implicit none

 write(*,*) ‘Hello world from ‘, &

 this_image() , ‘of’, num_images()

end program hello_world

Declaring coarrays

 An entirely new data structure, coarrays, become meaningful in

parallel programming context, when their data are remotely

accessible by its images

 Accomplished through additional Fortran syntax for coarrays

for Fortran arrays or scalars, for example :

 Declares a scalar with a local instance on every image

 Declares a vector with 64 elements on every image

integer, codimension[*] :: scalar
integer :: scalar[*]
real, dimension(64), codimension[*] :: vector
real :: vector(64)[*]

Declaring coarrays

 The square brackets [*] denote allocation of special coarrays

over allocated images (decided upon program startup)

 The round brackets “()” mean local array accesses, and the “[]”

are meant for remote data array accesses only

 integer :: global(3)[*], local(3)

global(:) = this_image() * (/ 1, 2, 3 /) ! local initialization

local(:) = global(:)[1] ! copy from image number 1 to every
 ! image

Synchronization

 We need to be careful when updating coarrays

 Is the remote data we are copying valid i.e. up to date?

 Could another image overwrite our data without notice?

 How do we know if the remote update (fetch) is complete?

 Fortran provides synchronization statements, e.g. adds a

barrier for synchronization of all images

 SYNC ALL

 To be absolutely sure we are getting correct result, we

need to modify our previous copying example a little …

Synchronization: corrected remote copy

 We need to add barrier synchronization of all images before

the copying takes place to be absolutely sure we are getting

the most up to date copy of global(:)[1]

 In this particular case – since only the image #1 is in a critical

position, we could use an alternative, pairwise form of

synchronization:

global(:) = this_image() * (/ 1, 2, 3 /)

sync all

local(:) = global(:)[1]

global(:) = this_image() * (/ 1, 2, 3 /)

sync images(1)

local(:) = global(:)[1]

Interim summary: basic concepts

 About parallel processing in general

 Concept of images and some related functions

 How to declare codimensional arrays (coarrays) and

access their data

 Image synchronization

Multiple codimensions

 Multidimensional coarrays are possible also in terms of

codimension

 The last codimension must always be declared with asterisk “*”

 Sum of rank plus corank must be ≤ 15

 The bounds of codimensions start from 1 by default but can be

adjusted

integer, codimension[2,*] :: scalar
real, dimension(64,64), codimension[4,*] :: matrix
real, dimension(128,128,128), codimension[0:1,0:1,0:*] :: grid

image_index() and this_image()

 So far we have seen this_image()

function been used without arguments

 In its another calling form it takes a co-

array as an argument, e.g.

real :: a(7,7) [0:3,3:*]

print *, this_image(a)

 When running with 10 images it returns

(say) for image#7 a vector (2, 4)

 image_index() performs the opposite

conversion, i.e. returns a linear number

of codimensional coordinates

1

2

3

4

5

6

7

8

9

10

0

0

3 4 5

0

1

2

3

A(:,:)[2,4]

Coarrays in procedures

 When declared in a subroutine or function, a co-array

must be one the following

 Declared as a dummy argument to the procedure

 Have ALLOCATABLE and/or SAVE attribute

 Re-mapping of corank is also allowed

 A coarray in procedure cannot be an automatic array

Co-arrays in procedures

subroutine some_routine (n, array_1, co_array_1, array_2, co_array_2, co_array_3)

implicit none

!-- procedure arguments

integer, intent(in) :: n

integer, intent(inout) :: array_1(n) ! explicit shape

integer, intent(inout) :: co_array_1(n)[*] ! explicit shape

integer, intent(inout) :: array_2(:) ! assumed shape

integer, intent(inout) :: co_array_2(:)[*] ! assumed shape

integer, intent(inout) :: co_array_3[:] ! illegal : assumed co-shape

!-- procedure variable declarations (not all ok – see below)

integer :: local_array_1(n) ! ok, an automatic (regular) array

integer :: local_array_2(1000) ! ok, local (regular) array

integer :: local_co_array_1(n)[*] ! invalid : co-array can’t be automatic

integer :: local_co_array_2(1000)[*] ! invalid : save-attribute missing

integer, save :: local_co_array_3(1000)[*] ! ok, co-array with save-attr

integer, allocatable :: local_co_array_4(:)[:] ! ok, co-array with allocatable

integer, pointer :: local_co_array_5(:)[:] ! invalid : co-array can’t have pointer

end subroutine some_routine

I/O conventions

 Each image has its own, independent set of Fortran input

and output units

 The default input (“stdin”, i.e. READ(*,…) etc) is pre-

connected to the master image (image#1) only

 Do stdin with the image #1 only and broadcast the data

 Similarly with command-line input

program safe_and_correct_stdin
integer :: flag[*] = 0, i
if (this_image() == 1) then
 read *,flag
 do i = 2, num_images()
 flag[i] = flag
 enddo
endif
sync all
end program safe_and_correct_stdin

I/O conventions

 The default output (“stdout”) is connected to all images

 Output is merged (in any order) into one output stream

 PRINT *, WRITE(*,…), WRITE(6,…)

 The standard error (“stderr”) is redirected to the

“stdout”

 WRITE(0,…)

ALLOCATABLE coarrays

 It is possible to define dynamic coarrays, where both shape (i.e.

locally owned part) and co-shape are dynamic, e.g. an allocatable

with deferred shapes:

integer , allocatable :: a(:) [:]

...

allocate (a(1000)[*])

deallocate (a)

 ALLOCATE and DEALLOCATE imply implicit synchronization –

all images must participate i.e. an implicit sync all occurs

 The local size (here: 1000) must be the same on each image

 The last co-dimension must have an asterisk “*”

About POINTERs with coarrays

 A coarray declaration cannot have a POINTER attribute

 Thus the following would be illegal:
real, pointer :: ptr[:] ! this is invalid Fortran

 However, we can define a new TYPE, where type

component(s) have POINTER (or ALLOCATABLE)

attributes

 And then define a coarray being of that TYPE

 Used in dynamic dimensioning of coarrays

 This way local sizes on every image can be different

Variable length coarrays via ALLOCATABLE

 Create a new Fortran data type with ALLOCATABLE

component in it – and place it in a MODULE
type mytype

 real, allocatable :: data(:)

end type mytype

 Then declare a coarray of that type, e.g.

type (mytype) :: co[*]

 ALLOCATE on each image, but different size
allocate (co % data (10 * this_image()))

 Refer to the data of another image such as
element = co[1] % data(1)

Variable length coarrays via POINTER

 Or, after defining
TYPE (mytype) :: co[*]

REAL, TARGET :: chunk(1000)

 Make co%data to point different chunks of local data
CALL get_my_range(size(chunk), istart, iend)

co%data => chunk(istart:iend)

Summary of the latter part

 Multiple codimensions & bounds

 Using coarrays in procedures

 I/O in Fortran coarrays

 How to define coarrays with varying-sized local parts

Future Fortran coarrays

 Coarrays continue to evolve

 Technical specification (TS) outlines the future

developments

 In the pipeline are the following extensions to the CAF

 Image teams

 Fault tolerant features

 Collective intrinsic functions for coarrays

 co_broadcast

 co_sum, co_min, co_max

 co_reduce

 Etc

Programming assignment

Parallelize the Game of Life program (assignment #3) with coarrays. by
dividing the board in columns and assigning one column to one image.
A domain decomposition, that is.

The images are able to update their part of the board independently
everywhere else than on the column boundaries - there the
communication of a single column with the nearest image is needed
(the board is periodic, so the first column of the board is 'connected'
to the last column). This is realized by having additional ghost layers on
each of the local columns, that contain the boundary data of the
neighboring tasks. The periodicity in the other direction is accounted as
earlier. Make all the images print their own parts of the board on
different files, e.g. life_nnnn_mm.pbm, where nnnn is the iteration and
mm is the image number.

You can ease the problem by requiring the board width to be dividable by
the number of images.

You will need to use either CSC’s or FMI’s Cray XC (Sisu or Voima).

Programming assignment

Image 1 2 3 4

Lo
ca

l p
o

rt
io

n
 o

f
th

e
b

o
ar

d

Also the first column in the local
board of each image has to be

availed in the ghost layer of the
previous rank

Due to problem
periodicity, the
image #1 has to

avail its first
column for the
image #4. The

image #4 copies its
last column to

image #1.

Each image will have additional
columns in both ends of the local

board. Before each update the
last column of each image’s

board has to be copied to the
ghost layer of the next one

