
Lecture V: Introduction to parallel

programming with Fortran coarrays

What is parallel computing?

 Serial computing

 Single processing unit (core) is

used for solving a problem

 One task processed at a time

 Parallel computing

 Multiple cores are used for

solving a problem

 Problem is split into smaller

subtasks

 Multiple subtasks are processed

simultaneously

P
r
o
b
l
e
m

c
o
r
e

r
e
s
u
l
t

P
r
o
b
l
e
m

c1

r
e
s
u
l
t

c2

c3

cN

...

Why parallel computing?

 Solve problems faster

 CPU clock frequencies are no longer increasing - speed-up is

obtained by using multiple cores

 Parallel programming is required for utilizing multiple cores

 Solve bigger problems

 Parallel computing may allow application to use more memory

 Apply old models to new length and time scales

 Grand challenges

 Solve problems better

 More precise models

Types of parallel computers

 Shared memory
 all the cores can access the whole memory

 Distributed memory
 all the cores have their own memory

 communication is needed in order to access

the memory of other cores

 Current supercomputers combine the

distributed memory and shared memory

approaches

What are Fortran coarrays about ?

 Adds parallel processing as part of Fortran language

 Only small changes required to convert existing Fortran code

to support a robust and potentially efficient parallelism

 A Partitioned Global Address Space (PGAS) language

 Coarrays implement parallelism over “distributed shared

memory” potentially massively parallel

 Has been integrated into Fortran 2008 standard

 Only few compilers so far support the syntax

 CCE for real

 Intel tops on MPI

 GNU supports only one image

Coarrays…

 Add only a few new rules to the Fortran language

 Provide mechanisms to allow

 SPMD (Single Program, Multiple Data) style of explicitly parallel

programming

 Data distribution over partitioned memory (you can think

about “distributed shared memory” here)

 Guard against race conditions (in e.g. variable value

assignments) by using synchronization

 Memory management for dynamic shared entities

Execution model

 Upon startup a coarrays program gets replicated into a

number of copies called images (i.e. processes)

 The number of images is usually decided at the execution time

 Each “replica” (image) runs asynchronously in a

loosely/non-coupled way until program controlled

synchronization

 Image’s (local) data are visible within the image only –

except for data declared as special arrays i.e. coarrays

 One-sided data communication enables movement of coarray

data across different images of a program

Time for “Hello World”!

 num_images() returns the number of images in use for this run

(usually set outside the program, by the environment)

 this_image() returns the image number in concern –

numbered from 1 to num_images()

 This program is a trivially parallel i.e. each image does not

explicitly share any data and runs seemingly independently

program hello_world

 implicit none

 write(*,*) ‘Hello world from ‘, &

 this_image() , ‘of’, num_images()

end program hello_world

Declaring coarrays

 An entirely new data structure, coarrays, become meaningful in

parallel programming context, when their data are remotely

accessible by its images

 Accomplished through additional Fortran syntax for coarrays

for Fortran arrays or scalars, for example :

 Declares a scalar with a local instance on every image

 Declares a vector with 64 elements on every image

integer, codimension[*] :: scalar
integer :: scalar[*]
real, dimension(64), codimension[*] :: vector
real :: vector(64)[*]

Declaring coarrays

 The square brackets [*] denote allocation of special coarrays

over allocated images (decided upon program startup)

 The round brackets “()” mean local array accesses, and the “[]”

are meant for remote data array accesses only

 integer :: global(3)[*], local(3)

global(:) = this_image() * (/ 1, 2, 3 /) ! local initialization

local(:) = global(:)[1] ! copy from image number 1 to every
 ! image

Synchronization

 We need to be careful when updating coarrays

 Is the remote data we are copying valid i.e. up to date?

 Could another image overwrite our data without notice?

 How do we know if the remote update (fetch) is complete?

 Fortran provides synchronization statements, e.g. adds a

barrier for synchronization of all images

 SYNC ALL

 To be absolutely sure we are getting correct result, we

need to modify our previous copying example a little …

Synchronization: corrected remote copy

 We need to add barrier synchronization of all images before

the copying takes place to be absolutely sure we are getting

the most up to date copy of global(:)[1]

 In this particular case – since only the image #1 is in a critical

position, we could use an alternative, pairwise form of

synchronization:

global(:) = this_image() * (/ 1, 2, 3 /)

sync all

local(:) = global(:)[1]

global(:) = this_image() * (/ 1, 2, 3 /)

sync images(1)

local(:) = global(:)[1]

Interim summary: basic concepts

 About parallel processing in general

 Concept of images and some related functions

 How to declare codimensional arrays (coarrays) and

access their data

 Image synchronization

Multiple codimensions

 Multidimensional coarrays are possible also in terms of

codimension

 The last codimension must always be declared with asterisk “*”

 Sum of rank plus corank must be ≤ 15

 The bounds of codimensions start from 1 by default but can be

adjusted

integer, codimension[2,*] :: scalar
real, dimension(64,64), codimension[4,*] :: matrix
real, dimension(128,128,128), codimension[0:1,0:1,0:*] :: grid

image_index() and this_image()

 So far we have seen this_image()

function been used without arguments

 In its another calling form it takes a co-

array as an argument, e.g.

real :: a(7,7) [0:3,3:*]

print *, this_image(a)

 When running with 10 images it returns

(say) for image#7 a vector (2, 4)

 image_index() performs the opposite

conversion, i.e. returns a linear number

of codimensional coordinates

1

2

3

4

5

6

7

8

9

10

0

0

3 4 5

0

1

2

3

A(:,:)[2,4]

Coarrays in procedures

 When declared in a subroutine or function, a co-array

must be one the following

 Declared as a dummy argument to the procedure

 Have ALLOCATABLE and/or SAVE attribute

 Re-mapping of corank is also allowed

 A coarray in procedure cannot be an automatic array

Co-arrays in procedures

subroutine some_routine (n, array_1, co_array_1, array_2, co_array_2, co_array_3)

implicit none

!-- procedure arguments

integer, intent(in) :: n

integer, intent(inout) :: array_1(n) ! explicit shape

integer, intent(inout) :: co_array_1(n)[*] ! explicit shape

integer, intent(inout) :: array_2(:) ! assumed shape

integer, intent(inout) :: co_array_2(:)[*] ! assumed shape

integer, intent(inout) :: co_array_3[:] ! illegal : assumed co-shape

!-- procedure variable declarations (not all ok – see below)

integer :: local_array_1(n) ! ok, an automatic (regular) array

integer :: local_array_2(1000) ! ok, local (regular) array

integer :: local_co_array_1(n)[*] ! invalid : co-array can’t be automatic

integer :: local_co_array_2(1000)[*] ! invalid : save-attribute missing

integer, save :: local_co_array_3(1000)[*] ! ok, co-array with save-attr

integer, allocatable :: local_co_array_4(:)[:] ! ok, co-array with allocatable

integer, pointer :: local_co_array_5(:)[:] ! invalid : co-array can’t have pointer

end subroutine some_routine

I/O conventions

 Each image has its own, independent set of Fortran input

and output units

 The default input (“stdin”, i.e. READ(*,…) etc) is pre-

connected to the master image (image#1) only

 Do stdin with the image #1 only and broadcast the data

 Similarly with command-line input

program safe_and_correct_stdin
integer :: flag[*] = 0, i
if (this_image() == 1) then
 read *,flag
 do i = 2, num_images()
 flag[i] = flag
 enddo
endif
sync all
end program safe_and_correct_stdin

I/O conventions

 The default output (“stdout”) is connected to all images

 Output is merged (in any order) into one output stream

 PRINT *, WRITE(*,…), WRITE(6,…)

 The standard error (“stderr”) is redirected to the

“stdout”

 WRITE(0,…)

ALLOCATABLE coarrays

 It is possible to define dynamic coarrays, where both shape (i.e.

locally owned part) and co-shape are dynamic, e.g. an allocatable

with deferred shapes:

integer , allocatable :: a(:) [:]

...

allocate (a(1000)[*])

deallocate (a)

 ALLOCATE and DEALLOCATE imply implicit synchronization –

all images must participate i.e. an implicit sync all occurs

 The local size (here: 1000) must be the same on each image

 The last co-dimension must have an asterisk “*”

About POINTERs with coarrays

 A coarray declaration cannot have a POINTER attribute

 Thus the following would be illegal:
real, pointer :: ptr[:] ! this is invalid Fortran

 However, we can define a new TYPE, where type

component(s) have POINTER (or ALLOCATABLE)

attributes

 And then define a coarray being of that TYPE

 Used in dynamic dimensioning of coarrays

 This way local sizes on every image can be different

Variable length coarrays via ALLOCATABLE

 Create a new Fortran data type with ALLOCATABLE

component in it – and place it in a MODULE
type mytype

 real, allocatable :: data(:)

end type mytype

 Then declare a coarray of that type, e.g.

type (mytype) :: co[*]

 ALLOCATE on each image, but different size
allocate (co % data (10 * this_image()))

 Refer to the data of another image such as
element = co[1] % data(1)

Variable length coarrays via POINTER

 Or, after defining
TYPE (mytype) :: co[*]

REAL, TARGET :: chunk(1000)

 Make co%data to point different chunks of local data
CALL get_my_range(size(chunk), istart, iend)

co%data => chunk(istart:iend)

Summary of the latter part

 Multiple codimensions & bounds

 Using coarrays in procedures

 I/O in Fortran coarrays

 How to define coarrays with varying-sized local parts

Future Fortran coarrays

 Coarrays continue to evolve

 Technical specification (TS) outlines the future

developments

 In the pipeline are the following extensions to the CAF

 Image teams

 Fault tolerant features

 Collective intrinsic functions for coarrays

 co_broadcast

 co_sum, co_min, co_max

 co_reduce

 Etc

Programming assignment

Parallelize the Game of Life program (assignment #3) with coarrays. by
dividing the board in columns and assigning one column to one image.
A domain decomposition, that is.

The images are able to update their part of the board independently
everywhere else than on the column boundaries - there the
communication of a single column with the nearest image is needed
(the board is periodic, so the first column of the board is 'connected'
to the last column). This is realized by having additional ghost layers on
each of the local columns, that contain the boundary data of the
neighboring tasks. The periodicity in the other direction is accounted as
earlier. Make all the images print their own parts of the board on
different files, e.g. life_nnnn_mm.pbm, where nnnn is the iteration and
mm is the image number.

You can ease the problem by requiring the board width to be dividable by
the number of images.

You will need to use either CSC’s or FMI’s Cray XC (Sisu or Voima).

Programming assignment

Image 1 2 3 4

Lo
ca

l p
o

rt
io

n
 o

f
th

e
b

o
ar

d

Also the first column in the local
board of each image has to be

availed in the ghost layer of the
previous rank

Due to problem
periodicity, the
image #1 has to

avail its first
column for the
image #4. The

image #4 copies its
last column to

image #1.

Each image will have additional
columns in both ends of the local

board. Before each update the
last column of each image’s

board has to be copied to the
ghost layer of the next one

