
Lecture VI: Some more advanced

features

Outline

 Interoperability with C/C++

 Reading environment variables

 Executing system commands

 Most slides originate from a lecture by Sami Saarinen, CSC

Language interoperability

 Problem of language interoperability been present for

long time

 Utilizing libraries or other pieces of written in Fortran

from C programs or vice versa

 Solvers, I/O schemas, database interfaces,...

 Realities of academic software collaborations...

Example: Calling a C library (CBLAS) from

Fortran

program f_calls_c

use, intrinsic :: iso_c_binding

implicit none

integer(kind=c_int), parameter :: n = 100

real(kind=c_float) :: x(n), y(n), sdot

interface

 function cblas_example(n, x, incx, y, incy) bind(c, name=’cblas_sdot’)
result(anumber)

 use, intrinsic :: iso_c_binding

 integer(kind=c_int), value :: n, incx, incy

 real(kind=c_float), intent(in) :: x(*), y(*)

 real(kind=c_float) :: anumber

 end function cblas_example

end interface

! init x & y

x(:) = 1.5 ; y(:) = 2.5

sdot = cblas_example(n, x, 1, y, 1) ! a direct call to ’cblas_sdot’

print *,’sdot=’,sdot

end program f_calls_c
The bottom line is to use INTERFACE-blocks

and bind(c)

Basic remarks

 A Fortran SUBROUTINE is mapped to a C-function with void

result

 A Fortran FUNCTION on the other hand maps to a C-function

that returns a value

 The main program can be either in Fortran or C language

 Binding <label> in bind(c, name=<label>)

 Is case sensitive when provided (e.g. name=’C_funcX’)

 If the “name=“ attribute is omitted, it takes Fortran name

converted to lowercase (no underscores appended)

The ISO_C_BINDING module

 Activated via
use, intrinsic :: iso_c_binding

 Provides access to named constants that represent kind

type parameters of data representations compatible with C

types

 The module also contains

 the derived type c_ptr corresponding to any C data pointer type

 the derived type c_funptr corresponding to any C func. pointer type

 Also contains few helper routines, e.g.

 c_loc, c_funloc, c_f_pointer, c_associated

Mapping between Fortran and C data types

 Using ISO C-bindings consistently, we can make sure our

codes run correctly, despite “multi-lingual” nature

 The most common intrinsic data types mappings

Fortran declaration C data type

INTEGER(c_short) short int

INTEGER(c_int) int

INTEGER(c_long_long) long long int

REAL(c_float) float

REAL(c_double) double

CHARACTER(1,c_char) char

Array data interoperability

 C-array indexing always starts from index zero (0)

 Fortran default indexing starts from one (1)

 Multidimensional arrays in C “grow fastest” along the last

dimension e.g. 2D-arrays are “row-major”

 Fortran multidimensional arrays are opposite, e.g. 2D-arrays

are “column-major”

! fortran array declarations compatible with c

real (c_double) :: z1(5) ! indexing starts at 1

real(c_float) :: z2(4:6,17) ! 3 x 17 matrix

integer (c_int) :: ivec(-4 : 7) ! 12 elements

/* corresponding c-declarations */

double z1[5]; ! indexing between 0 and 4

float z2[17][3] ; ! note index swap

int ivec[12] ; ! indexing between 0 and 11

Accessing C data structures from Fortran

 In many cases it is possible to describe Fortran derived

data types in terms of C data structures (and vice versa)

 You need ISO C binding module again plus Fortran

derived type must have the bind(c) attribute

 However, use of sequence keyword is forbidden

 Each individual Fortran data type component must also

be of an interoperable type

 Fortran components cannot be allocatables or pointers

 C types cannot be unions nor structures with bit-fields

Accessing C data structures from Fortran

 Note that variable ordering, data types and fixed array sizes must be identical

 Typical usage comes through function calls, e.g. Fortran extracting information

from a C-routine

/* C data structure */

typedef struct {

 int count ;

 double d [100] ;

} C_type;

MODULE my_typedef

USE, INTRINSIC :: ISO_C_BINDING

IMPLICIT NONE

TYPE, bind(c) :: C_type_as_seen_by_Fortran

 integer(kind = c_int) :: count ! Can be any var. name

 real(kind = c_double) :: d (100) ! Can be any var. name

END TYPE C_type_as_seen_by_Fortran

END MODULE my_typedef

/* C-function example */

void C_func(C_type *p) {

 p->count = 1;

 p->d[0] = 1.23;

}

USE my_typedef

INTERFACE

 SUBROUTINE TESTF(P) bind(c, name=„C_func‟)

 USE my_typedef

 TYPE(C_type_as_seen_by_Fortran) :: P

 END SUBROUTINE TESTF

END INTERFACE

TYPE(C_type_as_seen_by_Fortran) :: X

CALL TESTF(X)

PRINT *,X % count, X % d(1) ! NB: Fortran indices 1...100

Accessing dynamic data components found

in C

 Note : use of TYPE(c_ptr) and utility routine C_F_pointer () are crucial ! !

/* C data structure */

typedef struct {

 int count ;

 double *d ; // dynamic

} C_type;

MODULE my_typedef

USE, INTRINSIC :: ISO_C_BINDING

IMPLICIT NONE

TYPE, bind(c) :: C_dynamic

 integer(kind = c_int) :: count

 type(kind = c_ptr) :: d ! Maps to “double *d”

END TYPE C_dynamic

END MODULE my_typedef

/* C-function example */

#include <stdlib.h> // for malloc

void C_func(C_type *p, int n) {

 p->count = n;

 p->d = malloc(n * sizeof(*p->d)) ;

 if (n > 0) p->d[0] = 1.23;

}

USE my_typedef

INTERFACE

SUBROUTINE TESTF(P,N) bind(c, name=„C_func‟)

 USE my_typedef

 TYPE(C_dynamic) :: P

 INTEGER(c_int), value :: N

 END SUBROUTINE TESTF

END INTERFACE

TYPE(C_dynamic) :: X

INTEGER(c_int), PARAMETER :: N = 10

REAL(c_double), POINTER :: xd(:)

CALL TESTF(X,N)

CALL C_F_pointer (x % d, xd, (/ N /)) ! Mapping !!

PRINT *,X % count, xd(1)

Note: cannot map Fortran allocatable

components

 Please note that any attempt to use non-fixed size components and relate it

to Fortran ALLOCATABLE is doomed because C and Fortran pointers are

entirely different concepts

 Thus the following attempt does not work – period

/* C data structure */

typedef struct {

 int count ;

 double *d ; // dynamic

} C_type;

module my_typedef

use, intrinsic :: iso_c_binding

implicit none

type, bind(c) :: c_dynamic

 integer(kind = c_int) :: count

 real(c_double), allocatable :: d (:)

end type c_dynamic

end module my_typedef

Exchanging global data

 Global data may be defined in Fortran in terms of data in

the Fortran modules, or in COMMON blocks

 In C language they are declared once outside functions

(often in main) and referenced via extern‟s elsewhere

 These can be accessed in Fortran by using bind(c) label

 Fortran module data is generally impossible to access

from C as Fortran module names are compiler and linker

depended

 Consistently defined variables in Fortran COMMON

blocks can also be accessed in C side

Some compatible global data mappings

/* Global C data */

int number ;

float Array[8] ;

double slice [3] [7];

struct coord {

 float x, y, z;

};

struct coord xyz ;

! fortran global data must sit in a module

module something

use , intrinsic :: iso_c_binding

implicit none

integer(c_int), bind(c) :: number

real(c_float) :: my_array(8)

bind(c, name=‘array’) :: my_array

real(c_double), bind(c) :: slice(7,3) ! index
swap

real(c_float) :: x, y, z

common /xyz/ x, y, z

bind(c) :: /xyz/ ! note /…/ syntax

end module something

Handling (binary) I/O

 Restricting us to binary (unformatted) I/O only

 Formatted text files are usually not a concern

 Fortran unformatted, non-direct access files by default

contain record delimiters (4 or 8 bytes long)

 Note: STREAM I/O and direct access files do not have them

 Files written from C-language don‟t have record delims

 Could be a real headache

 Writing & reading files with STREAM I/O in Fortran

usually solves most of the problems

Handling binary I/O

 The key: ACCESS = ‘STREAM’

 No artificial record delimiters

use, intrinsic :: iso_c_binding

:

integer(kind = c_int) :: array(100)

open (10, file=‘file.bin’,form=‘unformatted’,

 access=’stream’,status=’unknown’)

write (10) array(1:100) ! write 400 bytes

write (10) array(1:50) ! write 200 bytes

close (10)

... ARRAY(1:100)

... ARRAY(1:50) ...

File „file.bin‟– it‟s just data:

/* The corresponding C-reader is
trivial */

int array[100];

FILE *fp = fopen (”file.bin”, ”r”);

fread (array, sizeof(*array), 100, fp);

fread (array, sizeof(*array), 50, fp);

fclose (fp)

Interoperability: Conclusions

 Fortran standard now officially supports mechanisms to call

source codes or libraries written in C language, as well as

define Fortran routines to become callable from C

 There seems to be a number of pitfalls

 Dynamically allocated entities a culprit

 Use interoperability with care and avoid complicated structures

and calling sequences

 When new STREAM I/O access is used in Fortran, binary

files at least become interoperable with C-language

Environment variables

 Besides command line arguments, environment variables

are a common way to modify program behaviour

 Fortran 2003 has a standardized method for accessing

values of environment variables

 In Fortran 77/90/95 accessing getenv from C standard

library requires passing character strings from Fortran to

C and back

Environment variables

 Access a value of an environment variable
call get_environment_variable(name,value[,length]
 [,status][,trim_name])

 name is of type character string and contains the name of the requested variable

 value is of type character string and contains the value of the requested variable. If the

the actual variable value is too short or long it is padded with blanks or truncated. If the

variable has no value or does not exist, value is set to blanks

 length is of type integer and contains the length of the requested variable on return if

the variable exists and has a value and zero otherwise (optional)

 status is type integer. If requested variable does not exist status is 1. If value was too

short status is -1 and zero otherwise. For other return codes, see docs (optional)

 trim_name is of type logical and sets if trailing blanks are allowed in variable names or

not (optional)

Environment variables: example

program environment

implicit none

character(len=256) :: enval

integer :: len,stat

call get_environment_variable('HOSTNAME',enval,len,stat)

if (stat == 0) write (*,'(A,A)') 'Host=', enval(1:len)

call get_environment_variable('USER',enval,len,stat)

if (stat == 0) write (*,'(A,A)') 'User=', enval(1:len)

end program environment

Executing commands

 Invoking external (other) programs and system commands

from within a program is sometimes useful

 No source nor library API available for a useful program

 Pre/post processing scripts

 MPMD

 Fortran 2008 has a standardized method for invoking an

external command

 In Fortran 77/90/95 accessing system from C standard

library requires passing character strings from Fortran to

C and back

 With Fortran 2003, ISO-C bindings can be used

Executing commands

 Execute a command line
call execute_command_line(command[,wait][,exitstat]
 [,cmdstat][,cmdmsg])

 command is a character string containing the command to be invoked

 wait is logical value indicating if command termination is to be waited

(.true., the default) or if the command is to be executed

asynchronously (.false.) (optional)

 exitstat is an integer value containing the return value of the

command if wait=.true. (optional)

 cmdstat is an integer value. It is assigned a value of zero if command

executed successfully. For other return codes, see docs (optional)

 cmdmsg is a character string containing explanatory message for positive

values of cmdstat (optional)

Executing commands: example

program execcommand

implicit none

integer :: estat, cstat

call execute_command_line('ls -al', .TRUE., estat, cstat)

if (estat==0) write (*,'(A)') 'Command completed successfully’

end program execcommand

Programming assignment

The tarball snapshot.tar.gz provides an interface for calling

the utility libpng (which, e.g., generates png images from

data files) from Fortran programs. The program is

courtesy of Elias Toivanen (UH).

Some crucial parts have been removed - your task is to

provide the interfaces for calling the functions in

matrix_snapshot_interop.c from Fortran such that the

program works again and print nice .pbm images from

matrix data.

