
Lecture VII: Object-oriented 

features 



Outline 

 Support for object-oriented style Fortran programming 

 Type parameters 

 Procedure pointers 

 Type extension 

 Polymorphism 

 Fortran programming best practices 



What is object-oriented programming? 

 Program is separated into interacting objects 

 Objects couple the data and the methods operating on 

the data 

 Generic programming: the actual type of data and the 

associated implementation may be encapsulated and 

abstracted 

 Motivation: Maintainability, readability and modifiability of 

the code are improved  

 Fortran supports this approach by, e.g. , generic 

procedures, type extension, polymorphic variables and 

type-bound procedures 



Parameterisation of derived types 

 Derived types can have type parameters 

 

 

 

 

 

 

 

 Type parameters have to be integers (and declared as such) 

 They have to be either kind or len parameters and have the 

corresponding attributes 

 

type matrix(prec, rows, cols) 
   integer, kind :: prec 
   integer, len :: rows, cols 
   real(prec) :: mat(rows, cols) 
end type 
 
! usage 
type(matrix(selected_real_kind(8), 10, 20) :: a 
type(matrix(selected_real_kind(4), n=n1, m=n2) :: b 



Parameterisation of derived types 

 The type parameters can be given default values 

type matrix(prec, rows, cols) 
   integer, kind :: prec = selected_real_kind(8) 
   integer, len :: rows=100, cols=100 
   real(prec) :: mat(rows, cols) 
end type 
 
! usage 
type(matrix(selected_real_kind(4), 10, 20) :: a 
type(matrix) :: b ! double precision 100x100 matrix 



Deferred type parameters 

 A len type parameter is allowed to be a colon in type 

declaration of a pointer or allocatable entity 

character(len=:), pointer :: varchar 
character(len=100), target :: name 
character(len=200), target :: address 
type(matrix(kind(1.0d0),:,:)), pointer :: A 
real(kind=8), dimension(100,100), target :: B 
... 
varchar => name 
... 
varchar => address 
... 
A => B(1:50,1:50) 



Abstract interfaces 

 It is possible to define one interface for several (e.g. 

external) procedures having the same arguments but 

different names 

 The abstract interface block can be then used with the 

procedure statement to declare procedures 
abstract interface 
  subroutine subroutine_with_no_args 
  end subroutine_with_no_args 
  real function r_to_r(a,b) 
     real, intent(in) :: a, b) 
  end function r_to_r 
end interface 
... 
procedure(subroutine_with_no_args) :: sub1, sub2 
procedure(r_to_r) :: xyz 
! procedure statement can be used with explicit interface 
procedure(func) :: func2 



Pointers to procedures 

 Instead of a data object, a pointer can be associated with 

a procedure 

 A procedure pointer is declared by specifying that it is 

both a procedure and a pointer 
pointer :: sp 
interface  
  subroutine sp(a,b) 
    integer, intent(in) :: a 
    integer, intent(out) :: b 
  end subroutine sp 
end interface 
! could be used like 
sp => sub 
call sp(a,b) ! calls sub(a,b) 



Procedure pointer components 

 A derived type may contain a procedure pointer 

 E.g. define a type for representing a list of procedures 

(with the same interface) 

type process_list 
  procedure(process_interface), pointer :: process 
  type (process_list), pointer :: next 
end type process_list 
abstract interface 
  subroutine process_interface(...) 
    ... 
  end subroutine process_interface 
end interface 
... 
type(process_list) :: y(10) 
call y(i)%process(...) ! invoke directly a list process 
p => y(j)%process ! or assign a procedure pointer to one comp. 



Type extension 

 Creates new derived types by extending existing ones 

 The new type inherits all the components and may add 

new ones 

 

 type person 
  integer :: id 
  character(len=10) :: name 
  integer :: age 
end type 
! a new type can be formed as an extension as 
type, extends(person) :: employee 
  character(len=11) :: social_security_id 
  real :: salary 
end type 



Type extension 

 The new type inherits also all type parameters. New type 

parameters can be added. 

type matrix(prec, rows, cols) 
   integer, kind :: prec 
   integer, len :: rows, cols 
   real(prec) :: mat(rows, cols) 
end type 
type, extends(matrix) :: labelled_matrix(max_label_length) 
   integer, len :: max_label_length 
   character(max_label_length) :: label = ’’ 
end type labelled_matrix 
... 
type(labelled_matrix(kind(0.0),10,20,200)) :: x 



Polymorphism 

 The data type of a polymorphic variable may vary at run 

time 

 It has to be a pointer or allocatable, and it is declared 

with the class keyword: 

 

 

 

 The type named in the class attribute must be an 

extensible derived type 

type point 
  real :: x, y 
end type 
class(point), pointer :: p 



Polymorphism 

 Now for example 

 

 

 

 

 

 

 A polymorphic variable can be either an array or a scalar 

 In an polymorphic array all elements must be of same type 

real function distance(a, b) 
  class(point) :: a, b 
  distance = sqrt((a%x-b%x)**2 + (a%x-b%x)**2) 
end function distance 
! this can take arguments that are of type point but also 
! any extension of it, e.g. 
type, extends(point) :: data_point 
   real, allocatable :: data(:) 
end type  



Polymorphism 

 Unlimited polymorphic pointer may refer to objects of 

any type 

 The value of an unlimited polymorphic pointer cannot be 

accessed directly, but the object as a whole can be used 

 e.g. passed as an argument 

class(*), pointer :: univp 
type(triplet), pointer :: tripp 
real, pointer :: realp 
... 
univp => tripp ! valid 
univp => realp ! valid 
tripp => univp ! valid if dynamic type matches 
realp => univp ! invalid 



Polymorphism 

 To execute alternative code depending on the dynamic 

type of a polymorphic entity, the select type construct is 

used 
class(particle) :: p 
... 
print *, p%position, p%velocity, p%mass 
select type(p) 
type is (charged_particle) 
   print *, ’Charge: ’, p%charge 
class is (charged_particle) 
   print *, ’Charge: ’, p%charge 
   ! may have other attributes 
type is (particle) 
   !nothing extra 
class default 
   print *, ’may have other unknown attributes’ 
end select 
    
    



Type-bound procedures 

 These are 

procedures which 

are invoked through 

an object, and the 

actual procedure 

executed depends 

on the dynamic 

type of the object 

 Corresponds to a 

”method” of true 

OOP languages 

module mod_mytype 
  type mytype 
    private 
    real :: myvalue(3) = 0.0 
  contains 
    procedure :: write => write_mt 
    procedure :: reset 
  end type mytype 
  private :: write_mt, reset 
contains 
  subroutine write_mt(this,unit) 
    class(mytype) :: this 
    integer, optional :: unit 
    if (present(unit)) then 
      write(unit,*) this%myvalue 
    else 
      write(*,*) this%myvalue 
    end if 
  end subroutine write_mt 
  ... 
    



Type-bound procedures 

 Each type-bound procedure declaration specifies the 

name of the binding, and the name of the actual 

procedure 

 The type-bound procedures are invoked as component 

procedure pointers of the object 

 For example, the procedures of the last example would be 

invoked as 
call x%write(10) 
call x%reset 
! these are equivalent to 
! call write_mt(x,10) or call reset(x), but being 
! private they are only accessible through the object 
! outside the module mod_mytype 



Best practices - general considerations 

 Clarity first - if the program source code is easy to read 

for you, it will be that also for the next contributor, as 

well as the compiler 

 Comment and document your code 

 Write structured, simple code 

 Employ modules, write short and simple procedures 

 Express what you want to express simply, concisely and 

clearly; avoid gimmicks & hacks 

 Do not re-invent the wheel - use libraries and reuse code 

elsewhere 



Best practices - readability 

 Write standard-compliant, readable, portable code that is 

easy to modify 

 Isolate machine/compiler-dependent solutions with 

preprocessor pragmas and document them 

 Document your code (write a readme file and distribute 

it with the source code)  

 How to compile, run and how to interpret results 

 Don’t spare in comments 

 Not only describing what’s happening but also why 

 Use self-explaining variable and procedure names 

 compare ”A” vs ”coefficient_matrix” 

 



Best practices - syntax 

 Use modern control structures and avoid obsolete ones: 

 do ... end do 

 select case ... case ... end select 

 if ... else if ... end if 

 where... elsewhere ... end where 

 forall... end forall 

 Do not enumerate lines (old F77 practice) 

 Employ array syntax and other array features 



Best practices - variables 

 Define all variables 

 always have ”implicit none” 

 define constants as parameters 

 Avoid global variables; expose data as little as possible by 

minding private and public attributes 

 Encapsulate conceptually related variables into derived 

types 

 Initialize variables 

 An uninitialized variable is not necessary zero! 



Best practices - procedures 

 Each procedure should do one thing and do it well 

 The implementation details and local data should be hidden 

from the caller 

 Put procedures into modules - closely related procedures 

to the same module 

 Define interfaces for external procedures if you have to 

use them 

 Define intent(in|inout|out) for all procedure arguments 



Best practices - input/output 

 Implement as simple user input interface if possible 

 employ command-line arguments 

 allow free formatting in input files 

 Let the user control the output verbosity level 

 Implement sanity checks for user input, possibly 

recovering from insensible input 

 Have default values for all input parameters if feasible 

 Put all I/O into separate procedures (into a same module) 

 Spreading I/O everywhere into program code hinders compiler 

optimization 

 I/O is a typical performance bottleneck! 

 Use binary data and stream (perhaps asynchronous) I/O for 

other than log files 



Best practices - debugging 

 Generate a set of tests for your code and run the set 

frequently 

 When adding new features, just add more tests 

 Use debuggers (e.g. gdb) and compiler features (e.g. -

fbounds-check) to bug catching 



Best practices - performance 

 First do it correctly, and only then more efficiently (and 

still correctly) 

 ”Premature code optimization is the root of all evil” 

 Chosen algorithm defines the majority of program 

performance 

 90/10 rule - typically ~90% of the execution time is being 

spent on ~10% of the source code lines 

 Identify these parts by profiling and focus all optimization 

efforts into those 



The End 

 We have now covered the most useful features of the 

Fortran (2008) programming language 

 Scientific software development in a nutshell: 

 Employ the best algorithm 

 Write  

 standard-compliant 

 clear & concise 

 modular & structured 

 commented  

 code 



Programming assignment 

Revisit the vector algebra program (Assignment #4) and 

generalize it to treat arbitrary-sized vectors (you can 

omit the cross product, since its generalization is non-

trivial).  

Let’s do this by rewriting the vector_algebra module to 

employ (some) the presented object-oriented features, 

e.g. 

 The vector type has the operations type-bound 

 The type is being parameterized for precision 

 The procedures have polymorphic arguments 


