
Lecture VII: Object-oriented

features

Outline

 Support for object-oriented style Fortran programming

 Type parameters

 Procedure pointers

 Type extension

 Polymorphism

 Fortran programming best practices

What is object-oriented programming?

 Program is separated into interacting objects

 Objects couple the data and the methods operating on

the data

 Generic programming: the actual type of data and the

associated implementation may be encapsulated and

abstracted

 Motivation: Maintainability, readability and modifiability of

the code are improved

 Fortran supports this approach by, e.g. , generic

procedures, type extension, polymorphic variables and

type-bound procedures

Parameterisation of derived types

 Derived types can have type parameters

 Type parameters have to be integers (and declared as such)

 They have to be either kind or len parameters and have the

corresponding attributes

type matrix(prec, rows, cols)
 integer, kind :: prec
 integer, len :: rows, cols
 real(prec) :: mat(rows, cols)
end type

! usage
type(matrix(selected_real_kind(8), 10, 20) :: a
type(matrix(selected_real_kind(4), n=n1, m=n2) :: b

Parameterisation of derived types

 The type parameters can be given default values

type matrix(prec, rows, cols)
 integer, kind :: prec = selected_real_kind(8)
 integer, len :: rows=100, cols=100
 real(prec) :: mat(rows, cols)
end type

! usage
type(matrix(selected_real_kind(4), 10, 20) :: a
type(matrix) :: b ! double precision 100x100 matrix

Deferred type parameters

 A len type parameter is allowed to be a colon in type

declaration of a pointer or allocatable entity

character(len=:), pointer :: varchar
character(len=100), target :: name
character(len=200), target :: address
type(matrix(kind(1.0d0),:,:)), pointer :: A
real(kind=8), dimension(100,100), target :: B
...
varchar => name
...
varchar => address
...
A => B(1:50,1:50)

Abstract interfaces

 It is possible to define one interface for several (e.g.

external) procedures having the same arguments but

different names

 The abstract interface block can be then used with the

procedure statement to declare procedures
abstract interface
 subroutine subroutine_with_no_args
 end subroutine_with_no_args
 real function r_to_r(a,b)
 real, intent(in) :: a, b)
 end function r_to_r
end interface
...
procedure(subroutine_with_no_args) :: sub1, sub2
procedure(r_to_r) :: xyz
! procedure statement can be used with explicit interface
procedure(func) :: func2

Pointers to procedures

 Instead of a data object, a pointer can be associated with

a procedure

 A procedure pointer is declared by specifying that it is

both a procedure and a pointer
pointer :: sp
interface
 subroutine sp(a,b)
 integer, intent(in) :: a
 integer, intent(out) :: b
 end subroutine sp
end interface
! could be used like
sp => sub
call sp(a,b) ! calls sub(a,b)

Procedure pointer components

 A derived type may contain a procedure pointer

 E.g. define a type for representing a list of procedures

(with the same interface)

type process_list
 procedure(process_interface), pointer :: process
 type (process_list), pointer :: next
end type process_list
abstract interface
 subroutine process_interface(...)
 ...
 end subroutine process_interface
end interface
...
type(process_list) :: y(10)
call y(i)%process(...) ! invoke directly a list process
p => y(j)%process ! or assign a procedure pointer to one comp.

Type extension

 Creates new derived types by extending existing ones

 The new type inherits all the components and may add

new ones

 type person
 integer :: id
 character(len=10) :: name
 integer :: age
end type
! a new type can be formed as an extension as
type, extends(person) :: employee
 character(len=11) :: social_security_id
 real :: salary
end type

Type extension

 The new type inherits also all type parameters. New type

parameters can be added.

type matrix(prec, rows, cols)
 integer, kind :: prec
 integer, len :: rows, cols
 real(prec) :: mat(rows, cols)
end type
type, extends(matrix) :: labelled_matrix(max_label_length)
 integer, len :: max_label_length
 character(max_label_length) :: label = ’’
end type labelled_matrix
...
type(labelled_matrix(kind(0.0),10,20,200)) :: x

Polymorphism

 The data type of a polymorphic variable may vary at run

time

 It has to be a pointer or allocatable, and it is declared

with the class keyword:

 The type named in the class attribute must be an

extensible derived type

type point
 real :: x, y
end type
class(point), pointer :: p

Polymorphism

 Now for example

 A polymorphic variable can be either an array or a scalar

 In an polymorphic array all elements must be of same type

real function distance(a, b)
 class(point) :: a, b
 distance = sqrt((a%x-b%x)**2 + (a%x-b%x)**2)
end function distance
! this can take arguments that are of type point but also
! any extension of it, e.g.
type, extends(point) :: data_point
 real, allocatable :: data(:)
end type

Polymorphism

 Unlimited polymorphic pointer may refer to objects of

any type

 The value of an unlimited polymorphic pointer cannot be

accessed directly, but the object as a whole can be used

 e.g. passed as an argument

class(*), pointer :: univp
type(triplet), pointer :: tripp
real, pointer :: realp
...
univp => tripp ! valid
univp => realp ! valid
tripp => univp ! valid if dynamic type matches
realp => univp ! invalid

Polymorphism

 To execute alternative code depending on the dynamic

type of a polymorphic entity, the select type construct is

used
class(particle) :: p
...
print *, p%position, p%velocity, p%mass
select type(p)
type is (charged_particle)
 print *, ’Charge: ’, p%charge
class is (charged_particle)
 print *, ’Charge: ’, p%charge
 ! may have other attributes
type is (particle)
 !nothing extra
class default
 print *, ’may have other unknown attributes’
end select

Type-bound procedures

 These are

procedures which

are invoked through

an object, and the

actual procedure

executed depends

on the dynamic

type of the object

 Corresponds to a

”method” of true

OOP languages

module mod_mytype
 type mytype
 private
 real :: myvalue(3) = 0.0
 contains
 procedure :: write => write_mt
 procedure :: reset
 end type mytype
 private :: write_mt, reset
contains
 subroutine write_mt(this,unit)
 class(mytype) :: this
 integer, optional :: unit
 if (present(unit)) then
 write(unit,*) this%myvalue
 else
 write(*,*) this%myvalue
 end if
 end subroutine write_mt
 ...

Type-bound procedures

 Each type-bound procedure declaration specifies the

name of the binding, and the name of the actual

procedure

 The type-bound procedures are invoked as component

procedure pointers of the object

 For example, the procedures of the last example would be

invoked as
call x%write(10)
call x%reset
! these are equivalent to
! call write_mt(x,10) or call reset(x), but being
! private they are only accessible through the object
! outside the module mod_mytype

Best practices - general considerations

 Clarity first - if the program source code is easy to read

for you, it will be that also for the next contributor, as

well as the compiler

 Comment and document your code

 Write structured, simple code

 Employ modules, write short and simple procedures

 Express what you want to express simply, concisely and

clearly; avoid gimmicks & hacks

 Do not re-invent the wheel - use libraries and reuse code

elsewhere

Best practices - readability

 Write standard-compliant, readable, portable code that is

easy to modify

 Isolate machine/compiler-dependent solutions with

preprocessor pragmas and document them

 Document your code (write a readme file and distribute

it with the source code)

 How to compile, run and how to interpret results

 Don’t spare in comments

 Not only describing what’s happening but also why

 Use self-explaining variable and procedure names

 compare ”A” vs ”coefficient_matrix”

Best practices - syntax

 Use modern control structures and avoid obsolete ones:

 do ... end do

 select case ... case ... end select

 if ... else if ... end if

 where... elsewhere ... end where

 forall... end forall

 Do not enumerate lines (old F77 practice)

 Employ array syntax and other array features

Best practices - variables

 Define all variables

 always have ”implicit none”

 define constants as parameters

 Avoid global variables; expose data as little as possible by

minding private and public attributes

 Encapsulate conceptually related variables into derived

types

 Initialize variables

 An uninitialized variable is not necessary zero!

Best practices - procedures

 Each procedure should do one thing and do it well

 The implementation details and local data should be hidden

from the caller

 Put procedures into modules - closely related procedures

to the same module

 Define interfaces for external procedures if you have to

use them

 Define intent(in|inout|out) for all procedure arguments

Best practices - input/output

 Implement as simple user input interface if possible

 employ command-line arguments

 allow free formatting in input files

 Let the user control the output verbosity level

 Implement sanity checks for user input, possibly

recovering from insensible input

 Have default values for all input parameters if feasible

 Put all I/O into separate procedures (into a same module)

 Spreading I/O everywhere into program code hinders compiler

optimization

 I/O is a typical performance bottleneck!

 Use binary data and stream (perhaps asynchronous) I/O for

other than log files

Best practices - debugging

 Generate a set of tests for your code and run the set

frequently

 When adding new features, just add more tests

 Use debuggers (e.g. gdb) and compiler features (e.g. -

fbounds-check) to bug catching

Best practices - performance

 First do it correctly, and only then more efficiently (and

still correctly)

 ”Premature code optimization is the root of all evil”

 Chosen algorithm defines the majority of program

performance

 90/10 rule - typically ~90% of the execution time is being

spent on ~10% of the source code lines

 Identify these parts by profiling and focus all optimization

efforts into those

The End

 We have now covered the most useful features of the

Fortran (2008) programming language

 Scientific software development in a nutshell:

 Employ the best algorithm

 Write

 standard-compliant

 clear & concise

 modular & structured

 commented

 code

Programming assignment

Revisit the vector algebra program (Assignment #4) and

generalize it to treat arbitrary-sized vectors (you can

omit the cross product, since its generalization is non-

trivial).

Let’s do this by rewriting the vector_algebra module to

employ (some) the presented object-oriented features,

e.g.

 The vector type has the operations type-bound

 The type is being parameterized for precision

 The procedures have polymorphic arguments

