Lecture notes for the course

554017 Advanced Computational Chemistry

Pekka Manninen

2009

Contents

1 Many-electron wave functions 7
1.1 Molecular Schrödinger equation 7
1.1.1 Helium-like atom 9
1.2 Molecular orbitals: the first contact 10
1.2.1 Dihydrogen ion 10
1.3 Spin functions 12
1.4 Antisymmetry and the Slater determinant 13
1.4.1 Approximate wave functions for He as Slater determinants 14
1.4.2 Remarks on "interpretation" 15
1.4.3 Slater method 15
1.4.4 Helium-like atom revisited 16
1.4.5 Slater's rules 17
1.5 Further reading 18
1.6 Exercises for Chapter 1 18
2 Exact and approximate wave functions 19
2.1 Characteristics of the exact wave function 19
2.2 The Coulomb cusp 21
2.2.1 Hamiltonian for a He-like atom 21
2.2.2 Coulomb and nuclear cusp conditions 21
2.2.3 Electron correlation 22
2.3 Variation principle 23
2.3.1 Linear ansatz 23
2.3.2 Hellmann-Feynman theorem 24
2.3.3 The molecular electronic virial theorem 25
2.4 One- and N-electron expansions 26
2.5 Further reading 28
2.6 Exercises for Chapter 2 28
3 Molecular integral evaluation 31
3.1 Atomic basis functions 31
3.1.1 The Laguerre functions 32
3.1.2 Slater-type orbitals 33
3.1.3 Gaussian-type orbitals 34
3.2 Gaussian basis sets 35
3.3 Integrals over Gaussian basis sets 37
3.3.1 Gaussian overlap distributions 38
3.3.2 Simple one-electron integrals 38
3.3.3 The Boys function 39
3.3.4 Obara-Saika scheme for one-electron Coulomb integrals 40
3.3.5 Obara-Saika scheme for two-electron Coulomb integrals 41
3.4 Further reading 43
3.5 Exercises for Chapter 3 43
4 Second quantization 45
4.1 Fock space 45
4.1.1 Creation and annihilation operators 46
4.1.2 Number-conserving operators 48
4.2 The representation of one- and two-electron operators 49
4.3 Commutators and anticommutators 51
4.3.1 Evaluation of commutators and anti-commutators 52
4.4 Orbital rotations 53
4.5 Spin in second quantization 53
4.5.1 Operators in the orbital basis 54
4.5.2 Spin properties of determinants 57
4.6 Further reading 58
4.7 Exercises for Chapter 4 58
5 Hartree-Fock theory 61
5.1 The Hartree-Fock approximation 61
5.2 Restricted and unrestricted Hartree-Fock theory 63
5.2.1 Hartree-Fock treatment of H_{2} 63
5.3 Roothaan-Hall equations 64
5.3.1 On the convergence of the SCF method 66
5.3.2 Integral-direct SCF 68
5.4 Further reading 69
5.5 Exercises for Chapter 5 69
6 Configuration interaction 73
6.1 Configuration-interaction wave function 73
6.1.1 Single-reference CI wave functions 74
6.1.2 Multi-reference CI wave functions 74
6.1.3 Optimization of the CI wave function 75
6.1.4 On the disadvantages of the CI approach 75
6.2 Multi-configurational SCF theory 76
6.2.1 MCSCF wave function of H_{2} 76
6.2.2 Selection of the active space 77
6.3 Further reading 79
6.4 Exercises for Chapter 6 79
7 Description of dynamical correlation 81
7.1 Coupled-cluster theory 81
7.1.1 The CC Schrödinger equation 81
7.1.2 The coupled-cluster exponential ansatz 82
7.1.3 CI and CC models compared 83
7.1.4 On coupled-cluster optimization techniques 86
7.1.5 The closed-shell CCSD model 87
7.1.6 The equation-of-motion coupled-cluster method 88
7.1.7 Orbital-optimized coupled-cluster theory 88
7.2 Perturbation theory 89
7.3 Local correlation methods 91
7.4 Further reading 93
7.5 Exercises for Chapter 7 93
8 Performance of the electronic-structure models 97
8.1 Molecular equilibrium geometries 97
8.2 Molecular dipole moments 99
8.3 Reaction enthalpies 102
8.4 Notes on total electronic energies 102

Chapter 1

Many-electron wave functions

1.1 Molecular Schrödinger equation

The Schrödinger equation for a system of N electrons is ${ }^{1}$

$$
\begin{equation*}
\hat{H} \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=E \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \tag{1.1}
\end{equation*}
$$

where \hat{H} is the molecular Hamiltonian, which is for a molecule that contains N electrons and K nuclei (assumed to be fixed in space)

$$
\begin{equation*}
\hat{H}=\sum_{i=1}^{N} \hat{h}_{i}+\sum_{i=1}^{N} \sum_{j=i+1}^{N} \hat{g}_{i j}, \tag{1.2}
\end{equation*}
$$

where \hat{h}_{i} is the one-electron Hamiltonian of electron i moving in an electrostatic potential caused by the nuclei, and $\hat{g}_{i j}$ is the interaction between the electrons i and j :

$$
\begin{equation*}
\hat{h}_{i}=-\frac{1}{2} \nabla_{i}^{2}-\sum_{I=1}^{K} \frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|} ; \quad \hat{g}_{i j}=\frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \tag{1.3}
\end{equation*}
$$

The eigenfunctions or wave functions $\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ describe the electronic structure and properties of the molecule. $\{\mathbf{x}\}$ are used to collectively symbolize all variables needed to refer to particles; here the position and the internal degree of freedom, spin. It is necessary that the wave function is square-integrable,

$$
\begin{equation*}
\int \Psi^{\star}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \cdots d \mathbf{x}_{N}=K \quad(K \text { finite }) . \tag{1.4}
\end{equation*}
$$

Usually we assume that the wave function is normalized, i.e., $K=1$.
The corresponding eigenvalues are in the present context the quantized energy levels of the electronic "cloud" of the molecule. Any two eigenfunctions that correspond to different

[^0]energy values E_{m}, E_{n} possess the orthogonality property
\[

$$
\begin{equation*}
\int \Psi_{m}^{\star} \Psi_{n} d \mathbf{x}_{1} d \mathbf{x}_{2} \cdots d \mathbf{x}_{N}=0 \tag{1.5}
\end{equation*}
$$

\]

Even if two or more eigenvalues happen to be identical, corresponding to a degenerate state of the system, the different eigenfunctions may still be assumed orthogonal.

If we would like to include the effects of nuclear motion, the molecular Hamiltonian becomes (now restricting to electrostatic forces only)

$$
\begin{align*}
\hat{H} & =\hat{H}_{e}+\hat{H}_{n}+\hat{H}_{e n} \tag{1.6}\\
\hat{H}_{e} & =-\frac{1}{2} \sum_{i} \nabla_{i}^{2}+\frac{1}{2} \sum_{i j}^{\prime} \hat{g}_{i j} \\
\hat{H}_{n} & =-\frac{1}{2} \sum_{I} \frac{1}{m_{I}} \nabla_{I}^{2}+\frac{1}{2} \sum_{I J}^{\prime} Z_{I} Z_{J} \hat{g}_{I J} \\
\hat{H}_{e n} & =-\sum_{I} \sum_{i} \frac{Z_{I}}{r_{I i}} .
\end{align*}
$$

The wave function is correspondingly dependent on both the electron and nuclear variables. Usually, because of the large ratio m_{n} / m_{e}, it is a good approximation to separate these, and we may turn our attention to the electronic problem. This is referred to as the BornOppenheimer approximation. The nuclear-motion Schrödinger equation plays, however, a central role in molecular spectroscopy. The motion of nuclei can sometimes affect even those properties that are considered electronic. This is the case e.g. in the Jahn-Teller effect and the Renner effect. For fixed nuclei, we can write the total energy of the system simply as

$$
\begin{equation*}
E_{\mathrm{tot}}=E_{\text {electronic }}+\frac{1}{2} \sum_{I J}{ }^{\prime} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} \tag{1.7}
\end{equation*}
$$

Eq. (1.1) provides a basis for molecular quantum mechanics and all the static electronic properties of the molecule may be obtained by expectation values of the appropriate Hermitian operators or using perturbation theory. However, we should note the limitations of this model:

- Limitations in the Hamiltonian: non-relativistic kinematics, instant interactions, and the Born-Oppenheimer approximation (that implies $T=0$)
- Eq. (1.1) is soluble exactly only for a few trivial one-electron systems, such as hydrogen-like atom or the molecule H_{2}^{+}(see Exercise 1.1)
- Real experiments are not carried out for an isolated molecule, and observation always involves interaction with the system, and thus a time-independent description is not sufficient; but the time-independent form of (1.1), $\hat{H} \Psi=i \partial \Psi / \partial t$, should be applied.

1.1.1 Helium-like atom

For a helium-like atom with a point-like nucleus of charge Z the electronic Hamiltonian, Eq. (1.2), is

$$
\hat{H}=\hat{h}_{1}+\hat{h}_{2}+\hat{g}_{12}=-\frac{1}{2} \nabla_{1}^{2}-\frac{Z}{r_{1}}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{r_{2}}+\frac{1}{r_{12}} .
$$

Due to \hat{g}_{12}, this is a three-body problem, and thereby no closed form solution exists for the eigenvalue equation (1.1). We start our consideration by an approximation, where \hat{g}_{12} is set to zero, i.e. $\hat{H}_{0}=\hat{h}_{1}+\hat{h}_{2}$. We can separate the variables in the eigenvalue equation $H_{0} \Psi_{0}=E \Psi_{0}$ by substituting ${ }^{2}$

$$
\Psi_{0}=\Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\chi_{1}\left(\mathbf{r}_{1}\right) \chi_{2}\left(\mathbf{r}_{2}\right),
$$

to the eigenvalue equation and dividing by Φ, obtaining

$$
\frac{\hat{h}_{1} \chi_{1}\left(\mathbf{r}_{1}\right)}{\chi_{1}\left(\mathbf{r}_{1}\right)}+\frac{\hat{h}_{2} \chi_{2}\left(\mathbf{r}_{2}\right)}{\chi_{2}\left(\mathbf{r}_{2}\right)}=E,
$$

meaning that Φ is a solution if (denoting $E=\epsilon_{1}+\epsilon_{2}$)

$$
\begin{aligned}
& \hat{h}_{1} \chi_{1}\left(\mathbf{r}_{1}\right)=\epsilon_{1} \chi_{1}\left(\mathbf{r}_{1}\right) \\
& \hat{h}_{2} \chi_{2}\left(\mathbf{r}_{2}\right)=\epsilon_{2} \chi_{2}\left(\mathbf{r}_{2}\right),
\end{aligned}
$$

meaning that χ_{1} and χ_{2} are solutions of the one-electron eigenvalue problem $\hat{h} \chi=\epsilon \chi . \Phi$ is a simultaneous eigenstate of the operators \hat{h}_{1} and \hat{h}_{2},

$$
\begin{aligned}
& \hat{h}_{1} \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\epsilon_{1} \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \\
& \hat{h}_{2} \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\epsilon_{2} \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) .
\end{aligned}
$$

The 1-electron 1-center eigenfunctions that are solutions to the one-electron eigenvalue problem (this holds only in the absence of \hat{g}) are the same with the solutions of the Schrödinger equation for a hydrogen-like atom (note the factor Z),

$$
\begin{equation*}
\chi_{n l m}(r, \theta, \rho)=R_{n l}(r) Y_{l m}(\theta, \rho) \tag{1.8}
\end{equation*}
$$

consisting of the radial part

$$
\begin{equation*}
R_{n l}(r)=\left(\frac{2 Z}{n}\right)^{3 / 2} \sqrt{\frac{(n-l-1)!}{2 n(n+1)!}}\left(\frac{2 Z r}{n}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 Z r}{n}\right) \exp \left(-\frac{Z r}{n}\right) \tag{1.9}
\end{equation*}
$$

and a spherical harmonic function, explicitly expressed as

$$
\begin{equation*}
Y_{l m}(\theta, \rho)=\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) \exp (\mathrm{i} m \rho) . \tag{1.10}
\end{equation*}
$$

[^1]In the above, L denotes the associated Laguerre polynomials

$$
\begin{equation*}
L_{n}^{\alpha}(x)=\frac{1}{n!} \exp (x) x^{-\alpha} \frac{d^{n}}{d x^{n}}\left[\exp (-x) x^{n+\alpha}\right] \tag{1.11}
\end{equation*}
$$

and P the Legendre polynomials

$$
\begin{equation*}
P_{l}^{m}(x)=\frac{(-1)^{m}}{2^{l} l!}\left(1-x^{2}\right)^{m / 2} \frac{d^{l+m}}{d x^{l+m}}\left(x^{2}-1\right)^{l} ; \quad P_{l}^{-m}=(-1)^{m} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(x) . \tag{1.12}
\end{equation*}
$$

These shall be referred to as atomic orbitals (AO). However, this is used also for other atomic-centered functions with different radial parts, such as sc. Slater- or Gaussian-type functions.

1.2 Molecular orbitals: the first contact

When moving from atoms to molecules, the first complication is that even the one-electron eigenfunctions, even when $\hat{g}=0$, are not obtainable in closed form. Instead of the $1 s, 2 s, 2 p, \ldots$ AOs we need polycentric molecular orbitals (MO) that describe the states of a single electron spread around the whole nuclear framework.

1.2.1 Dihydrogen ion

The one-electron eigenvalue equation in the case of hydrogen molecule ion H_{2}^{+}is $\hat{h} \phi=\epsilon \phi$, where

$$
\hat{h}=-\frac{1}{2} \nabla^{2}-\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}\right) .
$$

This may be solved with high accuracy in confocal elliptic coordinates, the solution being a product of three factors that are in turn solutions of three separate differential equations. We will, however, go immediately to approximations. It is reasonable to expect that

$$
\begin{aligned}
& \phi(\mathbf{r}) \sim c_{A} \chi_{100}^{A}(\mathbf{r}) \quad(\text { densities close to nucleus A) } \\
& \phi(\mathbf{r}) \sim c_{B} \chi_{100}^{B}(\mathbf{r}) \text { (densities close to nucleus B) }
\end{aligned}
$$

where c_{A} and c_{B} are some numerical factors. An appropriate trial MO would then be

$$
\phi(\mathbf{r})=c_{A} \chi_{100}^{A}(\mathbf{r})+c_{B} \chi_{100}^{B}(\mathbf{r}) .
$$

Due to the symmetry of the molecule, it is reasonably to assume that there is no higher density in the other end than in the other; therefore

$$
|\phi(\mathbf{r})|^{2}=c_{A}^{2}\left[\chi_{100}^{A}(\mathbf{r})\right]^{2}+c_{B}^{2}\left[\chi_{100}^{B}(\mathbf{r})\right]^{2}+2 c_{A} c_{B} \chi_{100}^{A}(\mathbf{r}) \chi_{100}^{B}(\mathbf{r}),
$$

Table 1.1: Some lowest-energy solutions $\chi_{n l m}(Z=1)$ (blue for positive, orange for negative phase)

Figure 1.1: The two lowest MOs of H_{2}^{+}.
implies that $c_{B}= \pm c_{A}$. Thus, it appears that we can construct two rudimentary MOs from the $1 s$ AOs on the two centers, denoted by

$$
\begin{aligned}
\phi_{1}(\mathbf{r}) & =c_{A}^{\prime}\left[\chi_{100}^{A}(\mathbf{r})+\chi_{100}^{B}(\mathbf{r})\right] \\
\phi_{2}(\mathbf{r}) & =c_{B}^{\prime}\left[\chi_{100}^{A}(\mathbf{r})-\chi_{100}^{B}(\mathbf{r})\right],
\end{aligned}
$$

where the remaining numerical factors c_{A}^{\prime} and c_{B}^{\prime} are to be chosen so that the wave functions will be normalized. These are sketched in Figure 1.1.

MOs build up this way, in linear combination of atomic orbitals (LCAO), are of great importance throughout molecular quantum mechanics.

1.3 Spin functions

It is well-known that a single electron is not completely characterized by its spatial wave function $\phi(\mathbf{r})$, but an "intrinsic" angular momentum, spin, is required to explain e.g. line emission spectra of atoms in an external magnetic field. Therefore we must introduce a spin variable m_{s} in addition to \mathbf{r}. We further associate operators \hat{s}_{x}, \hat{s}_{y} and \hat{s}_{z} with the three components of spin angular momentum. We will adopt \mathbf{x} as a variable taking into account both degrees of freedom, m_{s} and \mathbf{r}, and then introduce spin-orbitals

$$
\begin{equation*}
\psi(\mathbf{x})=\phi(\mathbf{r}) \sigma\left(m_{s}\right) . \tag{1.13}
\end{equation*}
$$

σ describes the spin state and is a solution of an eigenvalue equation $\hat{s}_{z} \sigma=\lambda \sigma$.
If the orbital state is of energy ϵ, then

$$
\begin{align*}
\hat{h} \psi & =\epsilon \psi \tag{1.14}\\
\hat{s}_{z} \psi & =\lambda \psi, \tag{1.15}
\end{align*}
$$

and ψ is a state in which an electron simultaneously has definite energy and z-component of spin.

According to observations, the eigenvalue equation (1.15) has only two solutions for electrons:

$$
\hat{s}_{z} \alpha=\frac{1}{2} \alpha ; \quad \hat{s}_{z} \beta=-\frac{1}{2} \beta
$$

often referred to as "spin-up" and "spin-down". Therefore an orbital ϕ yields two possible spin-orbitals, $\psi=\phi \alpha$ and $\psi^{\prime}=\phi \beta$ with the normalization and orthogonality properties

$$
\begin{equation*}
\int \alpha^{\star} \alpha d m_{s}=\int \beta^{\star} \beta d m_{s}=1, \int \alpha^{\star} \beta d m_{s}=\int \beta^{\star} \alpha d m_{s}=0 . \tag{1.16}
\end{equation*}
$$

Also the total spin operators

$$
\begin{align*}
& \hat{S}_{z}=\sum_{i=1}^{N} \hat{s}_{i, z} \tag{1.17}\\
& \hat{S}^{2}=\sum_{i=1}^{N} \hat{s}_{i}^{2}=\sum_{i=1}^{N}\left(\hat{s}_{i, x}^{2}+\hat{s}_{i, y}^{2}+\hat{s}_{i, z}^{2}\right) \tag{1.18}
\end{align*}
$$

with eigenvalues of M and $S(S+1)$, respectively, are needed in the discussion of manyelectron system. They commute with a spin-free electronic Hamiltonian; and any exact stationary state Ψ is an eigenfunction of them.

1.4 Antisymmetry and the Slater determinant

The fact that electrons are indistinguishable, i.e. $\left|\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right|^{2}=\left|\Psi\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)\right|^{2}$, leads to (when generalized for N electrons) two possibilities for a wave function:

$$
\begin{array}{ll}
\hat{P} \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) & =\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \\
\hat{P} \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) & =\varepsilon_{P} \Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)
\end{array} \quad \text { symmetric wave function } \quad \text { antisymmetric wave function }
$$

where the operator \hat{P} permutes the arguments and ε_{P} is +1 for an even and -1 for an odd number of permutations.

The choice for an system consisting of N electrons is once and for all determined by the antisymmetry principle (Pauli exclusion principle): The wave function $\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ that describes any state of an N-electron system is antisymmetric under any permutation of the electrons.

Let us now work out the N-electron wave function. We start by introducing a product function of one-electron wave functions (spin-orbitals):

$$
\begin{equation*}
\Theta\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\psi_{1}\left(\mathbf{x}_{1}\right) \psi_{2}\left(\mathbf{x}_{2}\right) \cdots \psi_{N}\left(\mathbf{x}_{N}\right) . \tag{1.19}
\end{equation*}
$$

To yield a fully antisymmetric wave function, A number of differently permuted product functions must be combined. The combination of permutations is most conveniently
expressed as a Slater determinant

$$
\Phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=M\left|\begin{array}{cccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \psi_{2}\left(\mathbf{x}_{1}\right) & \cdots & \psi_{N}\left(\mathbf{x}_{1}\right) \tag{1.20}\\
\psi_{1}\left(\mathbf{x}_{2}\right) & \psi_{2}\left(\mathbf{x}_{2}\right) & \cdots & \psi_{N}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{1}\left(\mathbf{x}_{N}\right) & \psi_{2}\left(\mathbf{x}_{N}\right) & \cdots & \psi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right|
$$

by which all symmetric permutations are automatically rejected, and thus the Pauli principle is fulfilled. Expanded in Slater determinants the exact wave function is written as

$$
\begin{equation*}
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\sum_{k} c_{k} \Phi_{k}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \tag{1.21}
\end{equation*}
$$

The normalization factor M is reasoned in the following way: when expanded, Φ consists of N ! products, and thus an integrand $\Phi^{\star} \Phi$ would consist of $(N!)^{2}$ products, each of a form $\pm\left[\psi_{1}\left(\mathbf{x}_{i}\right) \psi_{2}\left(\mathbf{x}_{j}\right) \cdots \psi_{N}\left(\mathbf{x}_{k}\right)\right]\left[\psi_{1}\left(\mathbf{x}_{i^{\prime}}\right) \psi_{2}\left(\mathbf{x}_{j^{\prime}}\right) \cdots \psi_{N}\left(\mathbf{x}_{k^{\prime}}\right)\right]$. It is evident that unless $i=i^{\prime}, j=$ j^{\prime} etc. in a particular product, the product will give no contribution to the result, due to the orthogonality of spin-orbitals. Therefore, there are N ! non-vanishing contributions, and as every contribution is equal to 1 with normalized spin-orbitals, we have $\int \Phi^{\star} \Phi d \mathbf{x}_{1} \cdots d \mathbf{x}_{N}=$ $M^{2} N!$, hence the normalization factor has the value $M=(N!)^{-1 / 2}$.

1.4.1 Approximate wave functions for He as Slater determinants

The Slater determinant of the configuration $(1 s)^{2}$ of a helium atom in the minimal orbital basis is

$$
\Phi=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\chi_{100}\left(\mathbf{r}_{1}\right) \alpha\left(m_{s 1}\right) & \chi_{100}\left(\mathbf{r}_{1}\right) \beta\left(m_{s 1}\right) \\
\chi_{100}\left(\mathbf{r}_{2}\right) \alpha\left(m_{s 2}\right) & \chi_{100}\left(\mathbf{r}_{2}\right) \beta\left(m_{s 2}\right)
\end{array}\right| \equiv \frac{1}{\sqrt{2}}|1 s \alpha 1 s \beta| .
$$

Note the abbreviated notation that will be used quite extensively hereafter: only the diagonal elements are displayed, and the explicit expression of variables is omitted - the left-right order of the variables in this notation will be $1,2,3, \ldots$. Also, note that we have denoted $\chi_{n l m}$'s with their corresponding AO labels.

The proper antisymmetric wave functions for the excited 1s2s configuration are in turn

$$
\begin{aligned}
\Phi_{2} & =\frac{1}{\sqrt{2}}|1 s \alpha 2 s \alpha| \\
\Phi_{3} & =\frac{1}{2}(|1 s \alpha 2 s \beta|+|1 s \beta 2 s \alpha|) \\
\Psi_{4} & =\frac{1}{\sqrt{2}}|1 s \beta 2 s \beta| \\
\Psi_{5} & =\frac{1}{2}(|1 s \alpha 2 s \beta|-|1 s \beta 2 s \alpha|)
\end{aligned}
$$

1.4.2 Remarks on "interpretation"

What is the physical meaning of the wave functions introduced earlier? First of all, the general formulation of quantum mechanics is concerned only with symbolic statements involving relationships between operators and operands, and is independent of the employed "representation" or "interpretation".

- In a very "nihilistic" interpretation, MOs as well as spin-orbitals are just mathematical means for the solution of the molecular Schrödinger equation and no meaning can be given for them or even their squared norms.
- Perhaps more commonly, a spin-orbital $\psi(\mathbf{x})$ itself is thought to be just a mathematical entity but $|\psi(\mathbf{x})|^{2} d \mathbf{x}$ is taken to be the probability of a point-like electron being in an element $d \mathbf{x}$, that is, in volume element $d \mathbf{r}$ with spin between m_{s} and $m_{s}+d m_{s}$. $|\phi(\mathbf{r})|^{2} d \mathbf{r}$ is the probability of finding an electron with any spin in the volume element $d \mathbf{r}$. Also $\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ cannot be interpreted; but $|\Psi|^{2} d \mathbf{x}_{1} d \mathbf{x}_{2} \cdots d \mathbf{x}_{N}$ is a probability of the electron 1 in $d \mathbf{x}_{1}$, electron 2 simultaneously in $d \mathbf{x}_{2}$, etc. Then, the probability of electron 1 being in $d \mathbf{x}_{1}$ while other electrons are anywhere would be equal to $d \mathbf{x}_{1} \int \Psi^{\star} \Psi d \mathbf{x}_{2} \cdots d \mathbf{x}_{N}$.
- We may also think an electron of being delocalized, i.e. not having a more precise position than that indicated by its spatial part of the wave function $\phi(\mathbf{r})$. Then $|\phi(\mathbf{r})|^{2} d \mathbf{r}$ would be the amount of charge in an element $d \mathbf{r}$. In other words, in this point of view a MO can be thought to approximately describe an electron spread around the nuclear framework. However, as we will see later, MOs can be unitarily "rotated", i.e. their form shaped, and they still correspond to the same definite energy. Which MOs are then closest to the physical ones?

1.4.3 Slater method

It is possible to find reasonable approximations for the wave function with only a small number of determinants. The optimal coefficients c_{k} may, in principle, be determined by solving a secular problem

$$
\begin{equation*}
\mathbf{H c}=E \mathbf{S c}, \tag{1.22}
\end{equation*}
$$

where the matrices \mathbf{H} and \mathbf{S} have the matrix elements

$$
\begin{align*}
H_{\mu \nu}= & \int \Psi_{\mu}^{\star}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \hat{H} \Psi_{\nu}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \cdots d \mathbf{x}_{N} \\
& =\left\langle\Psi_{\mu}\right| \hat{H}\left|\Psi_{\nu}\right\rangle \tag{1.23}\\
S_{\mu \nu}= & \int \Psi_{\mu}^{\star}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \Psi_{\nu}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \cdots d \mathbf{x}_{N}=\left\langle\Psi_{\mu} \mid \Psi_{\nu}\right\rangle . \tag{1.24}
\end{align*}
$$

\mathbf{S} is referred to as an overlap matrix. The equation (1.22) is the essence of the Slater method. Observe the introduced Dirac notation for integrals. The coefficients care then
determined by a condition called the secular determinant

$$
\left|\begin{array}{cccc}
H_{11}-E & H_{12} & \ldots & H_{1 n} \tag{1.25}\\
H_{21} & H_{22}-E & \ldots & H_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
H_{n 1} & H_{n 2} & \ldots & H_{n n}-E
\end{array}\right|=0
$$

1.4.4 Helium-like atom revisited

Consider the 2-electron Hamiltonian, now including electron-electron interaction, $\hat{H}=$ $\hat{h}_{1}+\hat{h}_{2}+\hat{g}$. Let us assume that the wave function Ψ_{1} in Example 1.2 approximates the $(1 s)^{2}$ configuration of the He atom. The corresponding energy is obtained as an expectation value $\left\langle\Psi_{1}\right| \hat{H}\left|\Psi_{1}\right\rangle$, or by writing the normalization explicitly, as

$$
\begin{equation*}
E_{1}=\frac{\left\langle\Psi_{1}\right| \hat{H}\left|\Psi_{1}\right\rangle}{\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle} \tag{1.26}
\end{equation*}
$$

Now

$$
\begin{aligned}
H_{11}= & \frac{1}{2} \int\left\{\chi_{100}^{\star}\left(\mathbf{r}_{1}\right) \chi_{100}\left(\mathbf{r}_{2}\right)\left[\alpha\left(m_{s 1}\right) \beta\left(m_{s 2}\right)-\alpha\left(m_{s 2}\right) \beta\left(m_{s 1}\right)\right]^{\star}\right. \\
& \left.\times \hat{H} \chi_{100}\left(\mathbf{r}_{1}\right) \chi_{100}\left(\mathbf{r}_{2}\right)\left[\alpha\left(m_{s 1}\right) \beta\left(m_{s 2}\right)-\alpha\left(m_{s 2}\right) \beta\left(m_{s 1}\right)\right]\right\} d \mathbf{r}_{1} d \mathbf{r}_{2} d m_{s 1} d m_{s 2}
\end{aligned}
$$

but since the Hamiltonian does not operate on spins, we may perform the spin-integration immediately [c.f. Eq. (1.16)],

$$
\int\left[\alpha\left(m_{s 1}\right) \beta\left(m_{s 2}\right)-\alpha\left(m_{s 2}\right) \beta\left(m_{s 1}\right)\right]^{\star}\left[\alpha\left(m_{s 1}\right) \beta\left(m_{s 2}\right)-\alpha\left(m_{s 2}\right) \beta\left(m_{s 1}\right)\right] d m_{s 1} d m_{s 2}=2 .
$$

Thus we have

$$
\begin{aligned}
H_{11}= & \int \chi_{100}^{\star}\left(\mathbf{r}_{1}\right) \chi_{100}^{\star}\left(\mathbf{r}_{2}\right) \hat{H} \chi_{100}\left(\mathbf{r}_{1}\right) \chi_{100}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2} \\
= & \int \chi_{100}^{\star}\left(\mathbf{r}_{1}\right) \hat{h}_{1} \chi_{100}\left(\mathbf{r}_{1}\right) d \mathbf{r}_{1} \int \chi_{100}^{\star}\left(\mathbf{r}_{2}\right) \chi_{100}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{2} \\
& +\int \chi_{100}^{\star}\left(\mathbf{r}_{2}\right) \hat{h}_{2} \chi_{100}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{2} \int \chi_{100}^{\star}\left(\mathbf{r}_{1}\right) \chi_{100}\left(\mathbf{r}_{1}\right) d \mathbf{r}_{1} \\
& +\int \chi_{100}^{\star}\left(\mathbf{r}_{1}\right) \chi_{100}^{\star}\left(\mathbf{r}_{2}\right) \hat{g} \chi_{100}\left(\mathbf{r}_{1}\right) \chi_{100}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2} \\
= & 2 \epsilon_{1 s}+J
\end{aligned}
$$

This result is still a crude approximation, the only difference to the independent-particle model being the contribution J from the two-electron integral. The next step in the determination of He energy levels would be to include more and more Slater determinants
corresponding to excited state configurations and evaluate the respective matrix elements. As anticipated earlier, although the exact solution would require an infinite number of included determinants, the energy spectrum would in practise converge towards the correct one rather rapidly. However, the analysis of the many-electron problem using this kind of direct expansion would obviously be extremely tedious, and a more general approach is needed. Also, the evaluation of integrals gets far more complicated in the case of many atomic cores.

1.4.5 Slater's rules

We may indeed devise more systematic rules for the matrix elements. We begin by noting that the expectation value over the 1-electron part of the molecular Hamiltonian, $\sum_{i=1}^{N} \hat{h}_{i}$, will reduce to the sum of N identical terms, since the coordinates of each electron appear symmetrically in the corresponding integral:

$$
\begin{equation*}
\langle\Phi| \sum_{i} \hat{h}_{i}|\Phi\rangle=\sum_{r}\left\langle\psi_{r}\right| \hat{h}\left|\psi_{r}\right\rangle . \tag{1.27}
\end{equation*}
$$

The expectation value of the two-electron part is a bit more complicated, as contributions may arise from terms that differ by an interchange of two electrons; but essentially a similar argumentation leads to

$$
\begin{equation*}
\langle\Phi| \sum_{i j}^{\prime} \hat{g}_{i j}|\Phi\rangle=\sum_{r s}^{\prime}\left(\left\langle\psi_{r} \psi_{s}\right| \hat{g}\left|\psi_{r} \psi_{s}\right\rangle-\left\langle\psi_{r} \psi_{s}\right| \hat{g}\left|\psi_{s} \psi_{r}\right\rangle\right), \tag{1.28}
\end{equation*}
$$

where the former part is referred to as the Coulomb integral and the latter as the exchange integral. the expectation value of the energy being simply the sum of (1.27) and (1.28).

We also need the off-diagonal elements. Fortunately enough, there are non-vanishing elements only in two cases:

- one spin-orbital is different between Φ and $\Phi^{\prime}\left(\psi_{r}^{\prime} \neq \psi_{r}\right)$ when

$$
\begin{equation*}
\left\langle\Phi^{\prime}\right| \hat{H}|\Phi\rangle=\left\langle\psi_{r}^{\prime}\right| \hat{h}\left|\psi_{s}\right\rangle+\sum_{s \neq r}\left(\left\langle\psi_{r}^{\prime} \psi_{s}\right| \hat{g}\left|\psi_{r} \psi_{s}\right\rangle-\left\langle\psi_{r}^{\prime} \psi_{s}\right| \hat{g}\left|\psi_{s} \psi_{r}\right\rangle\right) \tag{1.29}
\end{equation*}
$$

- two spin-orbitals are different $\left(\psi_{r}^{\prime} \neq \psi_{r}, \psi_{s}^{\prime} \neq \psi_{s}\right)$ when

$$
\begin{equation*}
\left\langle\Phi^{\prime}\right| \hat{H}|\Phi\rangle=\left(\left\langle\psi_{r}^{\prime} \psi_{s}^{\prime}\right| \hat{g}\left|\psi_{r} \psi_{s}\right\rangle-\left\langle\psi_{r}^{\prime} \psi_{s}^{\prime}\right| \hat{g}\left|\psi_{s} \psi_{r}\right\rangle\right), \tag{1.30}
\end{equation*}
$$

These results are called Slater's rules. In Slater's rules, the spin-orbitals are required to be orthonormal, but the rules may be generalized for matrix elements even in a non-orthogonal spin-orbital basis.

1.5 Further reading

- R. McWeeny, Methods of Molecular Quantum Mechanics (Academic Press, 1992)

1.6 Exercises for Chapter 1

1. A general singlet two-electron state may be expanded as

$$
\begin{aligned}
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\sum_{n l m} C_{n l m, n l m}\left|\phi_{n l m} \alpha \phi_{n l m} \beta\right| \\
& +\sum_{\left(n_{1} l_{1} m_{1}\right)>\left(n_{2} l_{2} m_{2}\right)} C_{n_{1} l_{1} m_{1}, n_{2} l_{2} m_{2}}\left(\left|\phi_{n_{1} l_{1} m_{1}} \alpha \phi_{n_{2} l_{2} m_{2}} \beta\right|-\left|\phi_{n_{1} l_{1} m_{1}} \beta \phi_{n_{2} l_{2} m_{2}} \alpha\right|\right),
\end{aligned}
$$

where $\left|\phi_{1} \phi_{2}\right|$ is the two-electron Slater determinant. Show that we may separate the singlet function into a symmetric spatial part and an antisymmetric spin part:

$$
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \beta(2)]
$$

2. \star Show, that the overlap integral between two normalized s orbitals centred on nuclei A and B is

$$
S=\int 1 s_{A}(\mathbf{r}) 1 s_{B}(\mathbf{r}) d \mathbf{r}=\left(1+R+\frac{1}{3} R^{2}\right) \exp (-R)
$$

where R is the internuclear separation. Hint: use the confocal elliptic coordinate system (μ, ν, ϕ) with

$$
\begin{aligned}
\mu & =\frac{r_{A}+r_{B}}{R} 1 \leq \mu \leq \infty \\
\nu & =\frac{r_{A}-r_{B}}{R}-1 \leq \mu \leq 1
\end{aligned}
$$

and $0 \leq \phi \leq \pi$. In it, the volume element is given by $d \mathbf{r}=\frac{1}{8} R^{3}\left(\mu^{2}-\nu^{2}\right) d \mu d \nu d \phi$.
3. \star Consider the solution of the Schrödinger equation for the hydrogen molecule using a minimal basis, that is, $1 s$ function for both of the atoms. Sketch the obtained $1 \sigma_{g}$ and $1 \sigma_{u}$ orbitals, using the expression for the overlap integral given above.

Chapter 2

Exact and approximate wave functions

2.1 Characteristics of the exact wave function

We shall need to approximate the molecular wave function - perhaps drastically - in order to reach the applicability to molecules with multiple atomic cores and several electrons. The approximations should, however, carried out with care. For this reason, we will now list down the properties (either rationalized earlier or simply taken for granted) that an exact wave function would possess, and on this basis we should seek an approximate solution that retains as many of the following properties as possible.

The exact molecular electronic wave function Ψ

1. is antisymmetric with respect to the permutation of any pair of the electrons:

$$
\begin{equation*}
\hat{P} \Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\epsilon_{P} \Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) \tag{2.1}
\end{equation*}
$$

where $\epsilon_{P}= \pm 1$ for even and odd number of permutations, respectively.
2. is square-integrable everywhere in space,

$$
\begin{equation*}
\langle\Psi \mid \Psi\rangle=K \text { (} K \text { finite }) \tag{2.2}
\end{equation*}
$$

3. is variational in the sense that for all possible variations $\delta \Psi$, which are orthogonal to the wave function, the energy remains unchanged:

$$
\begin{equation*}
\langle\delta \Psi \mid \Psi\rangle=0 \Rightarrow\langle\delta \Psi| H|\Psi\rangle=0 \tag{2.3}
\end{equation*}
$$

4. is size-extensive; for a system containing non-interacting subsystems the total energy is equal to the sum of the energies of the individual systems.

Figure 2.1: Nuclear cusps. Wave functions corresponding to the two lowest eigenvalues of H_{2} molecule, along the $\mathrm{H}-\mathrm{H}$ bond (obtained from a FCI calculation in cc-pVDZ basis).
5. Within the non-relativistic theory, the exact stationary states are eigenfunctions of the total and projected spin operators,

$$
\begin{align*}
\hat{S}^{2} \Psi & =S(S+1) \Psi \tag{2.4}\\
\hat{S}_{z} \Psi & =M \Psi \tag{2.5}
\end{align*}
$$

6. The molecular electronic Hamiltonian (1.2) is singular for $\mathbf{r}_{i}=\mathbf{r}_{j}$ and thus the exact wave function must possess a characteristic non-differentiable behavior for spatially coinciding electrons, known as the electronic Coulomb cusp condition,

$$
\begin{equation*}
\lim _{r_{i j} \rightarrow 0}\left(\frac{\partial \Psi}{\partial r_{i j}}\right)_{\text {ave }}=\frac{1}{2} \Psi\left(r_{i j}=0\right) \tag{2.6}
\end{equation*}
$$

the description of which is a major obstacle in the accurate practical modelling of the electronic wave function. There exists a condition similar to (2.6) also for electrons coinciding point-like nuclei, known as the nuclear cusp condition.
7. It may shown that at large distances the electron density decays as

$$
\begin{equation*}
\rho(r) \sim \exp \left(-2^{3 / 2} \sqrt{I} r\right) \tag{2.7}
\end{equation*}
$$

where I is the ionization potential of the molecule.
8. The exact wave function transforms in a characteristic manner under gauge transformations of the potentials associated with electromagnetic fields, ensuring that all
molecular properties described by the wave function are unaffected by the transformations.

As we saw in the introductionary survey, some of these - square integrability and Pauli principle - are included straightforwardly, whereas size-extensivity and the cusp condition are more difficult to impose but still desirable. Others are of interest only in special situations.

2.2 The Coulomb cusp

2.2.1 Hamiltonian for a He -like atom

The non-relativistic Hamiltonian of the helium-like atom with the origin at the nucleus,

$$
\hat{H}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z}{\left|\mathbf{r}_{1}\right|}-\frac{Z}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{2}\right|}
$$

has singularities for $\mathbf{r}_{1}=\mathbf{0}, \mathbf{r}_{2}=\mathbf{0}$, and for $\mathbf{r}_{1}=\mathbf{r}_{2}$. At these points, the exact solution to the Schrödinger equation must provide contributions that balance the singularities such that the local energy

$$
\begin{equation*}
\epsilon\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{\hat{H} \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)}{\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)} \tag{2.8}
\end{equation*}
$$

remains constant and equal to the eigenvalue E. The only possible "source" for this balancing is the kinetic energy. It is convenient to employ the symmetry of the helium atom and express the kinetic energy operator in terms of three radial coordinates r_{1}, r_{2} and r_{12}, such that the Hamiltonian is written as

$$
\begin{align*}
\hat{H}= & -\frac{1}{2} \sum_{i=1}^{2}\left(\frac{\partial^{2}}{\partial r_{i}^{2}}+\frac{2}{r_{i}} \frac{\partial}{\partial r_{i}}+\frac{2 Z}{r_{i}}\right)-\left(\frac{\partial^{2}}{\partial r_{12}^{2}}+\frac{2}{r_{12}} \frac{\partial}{\partial r_{12}}-\frac{1}{r_{12}}\right) \\
& -\left(\frac{\mathbf{r}_{1}}{r_{1}} \cdot \frac{\mathbf{r}_{12}}{r_{12}} \frac{\partial}{\partial r_{1}}+\frac{\mathbf{r}_{2}}{r_{2}} \cdot \frac{\mathbf{r}_{21}}{r_{21}} \frac{\partial}{\partial r_{2}}\right) \frac{\partial}{\partial r_{12}} . \tag{2.9}
\end{align*}
$$

2.2.2 Coulomb and nuclear cusp conditions

In Eq. (2.9, the terms that multiply $1 / r_{12}$ at $r_{12}=0$ must vanish in $\hat{H} \Psi$, which imposes a condition

$$
\begin{equation*}
\left.\frac{\partial \Psi}{\partial r_{12}}\right|_{r_{12}=0}=\frac{1}{2} \Psi\left(r_{12}=0\right) \tag{2.10}
\end{equation*}
$$

on the wave function. Similarly, the singularities at the nucleus are now seen to be balanced by the kinetic energy terms proportional to $1 / r_{i}$:

$$
\begin{equation*}
\left.\frac{\partial \Psi}{\partial r_{i}}\right|_{r_{i}=0}=-Z \Psi\left(r_{i}=0\right) . \tag{2.11}
\end{equation*}
$$

Eq. (2.10) describes the situation when the electrons coincide in space and is referred to as the Coulomb cusp condition; whereas Eq. (2.11) establishes the behavior of the ground-state wave function in the vicinity of the nucleus and is known as the nuclear cusp condition.

Expanding the ground-state helium wave function around $r_{2}=r_{1}$ and $r_{12}=0$ we obtain

$$
\Psi\left(r_{1}, r_{2}, 0\right)=\Psi\left(r_{1}, r_{1}, 0\right)+\left.\left(r_{2}-r_{1}\right) \frac{\partial \Psi}{\partial r_{2}}\right|_{r_{2}=r_{1}}+\left.r_{12} \frac{\partial \Psi}{\partial r_{12}}\right|_{r_{2}=r_{1}}+\ldots
$$

which gives, when the cusp condition (2.10) is applied

$$
\Psi\left(r_{1}, r_{2}, 0\right)=\Psi\left(r_{1}, r_{1}, 0\right)+\left.\left(r_{2}-r_{1}\right) \frac{\partial \Psi}{\partial r_{2}}\right|_{r_{2}=r_{1}}+\frac{1}{2}\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right| \Psi\left(r_{1}, r_{1}, 0\right)+\ldots
$$

Therefore, the cusp condition leads to a wave function that is continuous but not smooth (discontinuous first derivative) at r_{12}.

The nuclear cusp condition for the "first" electron when the wave function does not vanish at $r_{1}=0$ (such as the helium ground state) is satisfied if the wave function exhibits an exponential dependence on r_{1} close to the nucleus:

$$
\Psi\left(r_{1}, r_{2}, r_{12}\right)=\exp \left(-Z r_{1}\right) \Psi\left(0, r_{2}, r_{12}\right) \approx\left(1-Z r_{1}\right) \Psi\left(0, r_{2}, r_{12}\right) .
$$

Molecular electronic wave functions are usually expanded in simple analytical functions centered on the atomic nuclei (AOs), and close to a given nucleus, the behavior of the wave function is dominated by the analytical form of the AOs. In particular, the Slatertype orbitals (introduced later), are compatible with the nuclear cusp condition, while the Gaussian-type orbitals are not.

It should be noted that the cusp conditions in Eqs. (2.10) and (2.11) are written for the totally symmetric singlet ground state of the helium atom. The cusp conditions in a more general situation (but still for a wave function that does not vanish at the singularities) should be written as

$$
\begin{align*}
\lim _{r_{i j} \rightarrow 0}\left(\frac{\partial \Psi}{\partial r_{i j}}\right)_{\text {ave }} & =\frac{1}{2} \Psi\left(r_{i j}=0\right) \tag{2.12}\\
\lim _{r_{i} \rightarrow 0}\left(\frac{\partial \Psi}{\partial r_{i}}\right)_{\text {ave }} & =-Z \Psi\left(r_{i}=0\right) \tag{2.13}
\end{align*}
$$

where the averaging over all directions is implied.

2.2.3 Electron correlation

Let us at this stage review some nomenclature of electron correlation used in molecular electronic-structure theory.

- A commonly-used concept, correlation energy, has a pragmatic definition

$$
E_{\text {corr }}=E_{\text {exact }}-E_{\mathrm{SD}},
$$

where E_{SD} is a best single-determinant total energy and $E_{\text {exact }}$ the "exact" energy in the same basis. This definition is most usable when speaking of molecular ground states and equilibrium geometries, while outside them it is untenable.

- Fermi correlation arises from the Pauli antisymmetry of the wave function and is taken into account already at the single-determinant level.
- Static correlation, also known as near-degeneracy or nondynamical correlation, arises from the near-degeneracy of electronic configurations.
- Dynamical correlation is associated with the instantaneous correlation among the electrons arising from their mutual Coulombic repulsion. It is useful to distinguish between
- long-range dynamical correlation and
- short-range dynamical correlation, which is related to the singularities in the Hamiltonian and giving rise to the Coulomb cusp in the wave function.

2.3 Variation principle

According to the variation principle, the solution of the time-independent Schrödinger equation $\hat{H}|\Psi\rangle=E|\Psi\rangle$ is equivalent to an optimization of the energy functional

$$
\begin{equation*}
E[\tilde{\Psi}]=\frac{\langle\tilde{\Psi}| \hat{H}|\tilde{\Psi}\rangle}{\langle\tilde{\Psi} \mid \tilde{\Psi}\rangle} \tag{2.14}
\end{equation*}
$$

where $|\tilde{\Psi}\rangle$ is some approximation to the eigenstate $|\Psi\rangle$. It provides a simple and powerful procedure for generating approximate wave functions: for some proposed model for the wave function, we express the electronic state $|\mathbf{C}\rangle$ in terms of a finite set of numerical parameters; the stationary points of energy function

$$
\begin{equation*}
E(\mathbf{C})=\frac{\langle\mathbf{C}| \hat{H}|\mathbf{C}\rangle}{\langle\mathbf{C} \mid \mathbf{C}\rangle} \tag{2.15}
\end{equation*}
$$

are the approximate electronic states $|\mathbf{C}\rangle$ and the values $E(\mathbf{C})$ at the stationary points the approximate energies. Due to the variation principle, the expectation value of the Hamiltonian is correct to second order in the error.

2.3.1 Linear ansatz

A simple realization of the variation method is to make a linear ansatz for the wave function,

$$
|\mathbf{C}\rangle=\sum_{i=1}^{m} C_{i}|i\rangle,
$$

i.e. the approximate state is expanded in m-dimensional set of Slater determinants. We further assume here that the wave function is real. The energy function of this state is given by Eq. (2.15). In order to locate and to characterize the stationary points, we shall employ the first and second derivatives with respect to the variational parameters:

$$
\begin{aligned}
E_{i}^{(1)}(\mathbf{C}) & =\frac{\partial E(\mathbf{C})}{\partial C_{i}}=2 \frac{\langle i| \hat{H}|\mathbf{C}\rangle-E(\mathbf{C})\langle i \mid \mathbf{C}\rangle}{\langle\mathbf{C} \mid \mathbf{C}\rangle} \\
E_{i j}^{(2)}(\mathbf{C}) & =\frac{\partial^{2} E(\mathbf{C})}{\partial C_{i} \partial C_{j}}=2 \frac{\langle i| \hat{H}|j\rangle-E(\mathbf{C})\langle i \mid j\rangle}{\langle\mathbf{C} \mid \mathbf{C}\rangle}-2 E_{i}^{(1)}(\mathbf{C}) \frac{\langle j \mid \mathbf{C}\rangle}{\langle\mathbf{C} \mid \mathbf{C}\rangle}-2 E_{j}^{(1)}(\mathbf{C}) \frac{\langle i \mid \mathbf{C}\rangle}{\langle\mathbf{C} \mid \mathbf{C}\rangle},
\end{aligned}
$$

known as the electronic gradient and electronic Hessian, respectively. The condition for stationary points, $\langle i| \hat{H}|\mathbf{C}\rangle=E(\mathbf{C})\langle i \mid \mathbf{C}\rangle$ is in a matrix form equal to $\mathbf{H C}=E(\mathbf{C}) \mathbf{S C}$, where the Hamiltonian and overlap matrix are given by $H_{i j}=\langle i| \hat{H}|j\rangle$ and $S_{i j}=\langle i \mid j\rangle$. Assuming that $\mathbf{S}=1$, we have to solve a standard m-dimensional eigenvalue problem with m orthonormal solutions $C_{K}=\left(C_{1 K} C_{2 K} \cdots C_{m K}\right)^{T}, \mathbf{C}_{K}^{T} \mathbf{C}_{K}=\delta_{K L}$, with the associated real eigenvalues $E_{K}=E\left(\mathbf{C}_{K}\right), E_{1} \leq E_{2} \leq \cdots \leq E_{m}$. The eigenvectors represent the approximate wave functions $|K\rangle=\sum_{i=1}^{M} C_{i K}|i\rangle$ with a corresponding approximate energy E_{K}. To characterize the stationary points, we note that the Hessian is at these points ${ }^{K} E_{i j}^{(2)}\left(\mathbf{C}_{K}\right)=2\left(\langle i| \hat{H}|j\rangle-E_{k}\langle i \mid j\rangle\right)$. We may also express the Hessian in the basis formed of the eigenvectors:

$$
{ }^{K} E_{M N}^{(2)}=2\left(\langle M| \hat{H}|N\rangle-E_{K}\langle M \mid N\rangle\right)=2\left(E_{M}-E_{N}\right) \delta_{M N} \Rightarrow{ }^{K} E_{M M}^{(2)}=2\left(E_{M}-E_{K}\right) .
$$

${ }^{K} E_{M M}^{(2)}$ is thus singular and $K^{\text {th }}$ state has exactly $K-1$ negative eigenvalues. Therefore, in the space orthogonal to C_{K}, the first solution is a minimum, the second a first-order saddle point, the third a second-order saddle point, and so forth.

2.3.2 Hellmann-Feynman theorem

Many of the theorems for exact wave functions hold also for the approximate ones that are variationally determined. One of the most important is the Hellmann-Feynman theorem, which states that the first-order change in the energy due to a perturbation may be calculated as the expectation value of the perturbation operator \hat{V} : Let $\left|\Psi_{\alpha}\right\rangle$ be the wave function associated with $\hat{H}+\alpha \hat{V}$ and $|\Psi\rangle$ unperturbed wave function at $\alpha=0$. Then

$$
\begin{align*}
\left.\frac{d E(\alpha)}{d \alpha}\right|_{\alpha=0} & =\left.\frac{\partial}{\partial \alpha} \frac{\left\langle\Psi_{\alpha}\right| \hat{H}+\alpha \hat{V}\left|\Psi_{\alpha}\right\rangle}{\left\langle\Psi_{\alpha} \mid \Psi_{\alpha}\right\rangle}\right|_{\alpha=0}=2 \operatorname{Re}\left\langle\left.\frac{\partial \Psi_{\alpha}}{\partial \alpha}\right|_{\alpha=0}\right| \hat{H}-E(0)|\Psi\rangle+\langle\Psi| \hat{V}|\Psi\rangle \\
& =\langle\Psi| \hat{V}|\Psi\rangle \tag{2.16}
\end{align*}
$$

In fact, for the Hellmann-Feynman theorem to hold, we need to demand from the approximate wave functions that they are optimized with respect to the changes induced by the perturbation: $|\Psi\rangle \rightarrow|\Psi\rangle+\alpha|\partial \Psi / \partial \alpha\rangle$. Usually in molecular calculations we construct our wave function from a finite set of analytical functions attached to the atomic nuclei. For example, when we distort the molecular geometry, we change the basis set in terms of which our electronic wave function is expanded, and a wave function optimized at one particular geometry is not accurately represented in terms of a basis set associated with another geometry. As a result, the unperturbed electronic is not variational with respect to these changes and the conditions of the Hellmann-Feynman theorem is not satisfied.

However, this is an artificial difficulty arising from the coordinate representation of quantum mechanics we presently operate in. The picture presented by the second quantization, the necessary conditions are fulfilled and we are able to employ the theorem for approximate wave functions in finite bases in exactly the same manner as for exact wave functions.

2.3.3 The molecular electronic virial theorem

The exact molecular energy is variational with respect to an arbitrary change in the wave function, particularly of interest are the uniform, normalization-preserving scaling of the electron coordinates

$$
\Psi\left(\mathbf{r}_{i}\right) \rightarrow \Psi_{\alpha}\left(\mathbf{r}_{i}\right)=\alpha^{3 N / 2} \Psi\left(\alpha \mathbf{r}_{i}\right)
$$

Let us partition the electronic Hamiltonian in a bit different manner than earlier:

$$
\begin{align*}
\hat{H}(\mathbf{R}) & =T+V(\mathbf{R}) \tag{2.17}\\
\hat{T} & =-\frac{1}{2} \sum_{i} \nabla_{i}^{2} \tag{2.18}\\
\hat{V}(\mathbf{R}) & =\sum_{i>j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}-\sum_{i I} \frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathbf{R}_{I}\right|}+\sum_{I>J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}, \tag{2.19}
\end{align*}
$$

and applying this decomposition we may find the stationary points of the energy function are found at ${ }^{6}$

$$
\begin{aligned}
0 & =\left.\frac{\partial}{\partial \alpha}\left\langle\Psi_{\alpha}\right| \hat{H}(\mathbf{R})\left|\Psi_{\alpha}\right\rangle\right|_{\alpha=1}=\left.\frac{\partial}{\partial \alpha}\left[\alpha^{2}\langle\Psi| \hat{T}|\Psi\rangle+\alpha\langle\Psi| \hat{V}(\alpha \mathbf{R})|\Psi\rangle\right]\right|_{\alpha=1} \\
& \Rightarrow 2\langle\Psi| \hat{T}|\Psi\rangle+\langle\Psi| \hat{V}(\mathbf{R})|\Psi\rangle=-\left.\langle\Psi| \frac{d V(\alpha \mathbf{R})}{d \alpha}\right|_{\alpha=1}|\Psi\rangle \stackrel{H-F}{=}-\left.\frac{d E(\alpha \mathbf{R})}{d \alpha}\right|_{\alpha=1}(2.20)
\end{aligned}
$$

This result (2.20) is the quantum-mechanical virial theorem for a field-free non-relativistic molecular Hamiltonian. The most important observation is that in the molecular equilibrium geometries ($\mathbf{R}=\mathbf{R}_{e}$), and in the case of atoms

$$
\begin{equation*}
\langle\Psi| \hat{T}|\Psi\rangle=-\frac{1}{2}\langle\Psi| \hat{V}\left(\mathbf{R}_{e}\right)|\Psi\rangle . \tag{2.21}
\end{equation*}
$$

[^2]Furthermore,

$$
\begin{equation*}
\left.\langle\Psi| \hat{T}|\Psi\rangle\right|_{\mathbf{R}=\mathbf{R}_{e}}=-E\left(\mathbf{R}_{e}\right), \quad\langle\Psi| \hat{V}\left(\mathbf{R}_{e}\right)|\Psi\rangle=2 E\left(\mathbf{R}_{e}\right) . \tag{2.22}
\end{equation*}
$$

Also these expressions hold for any approximate wave function that is variational with respect to a uniform scaling of the nuclear as well as electronic coordinates. Note that according to the last result, no stationary points of positive energy may exist.

The scaling force may be easily related to classical Cartesian forces on the nuclei, $\mathbf{F}_{I}(\mathbf{R})=-d E(\mathbf{R}) / d \mathbf{R}_{I}$, by invoking the chain rule

$$
\left.\frac{d E(\alpha \mathbf{R})}{d \alpha}\right|_{\alpha=1}=\left.\left.\sum_{I} \frac{d\left(\alpha \mathbf{R}_{I}\right)}{d \alpha}\right|_{\alpha=1} \frac{d E\left(\alpha \mathbf{R}_{I}\right)}{d\left(\alpha \mathbf{R}_{I}\right.}\right|_{\alpha=1}=-\sum_{I} \mathbf{R}_{I} \cdot \mathbf{F}_{I}(\mathbf{R})
$$

and combining this with virial theorem, we may extract the Cartesian forces experienced by the nuclei,

$$
\begin{equation*}
\sum_{I} \mathbf{R}_{I} \cdot \mathbf{F}_{I}(\mathbf{R})=2\langle\Psi| \hat{T}|\Psi\rangle+\langle\Psi| \hat{V}(\mathbf{R})|\Psi\rangle . \tag{2.23}
\end{equation*}
$$

2.4 One- and N-electron expansions

Let us recall: the Slater determinants do not represent an accurate solution to the molecular Schrödinger equation, but we may express the exact wave function as a superposition of determinants. Furthermore, it is necessary to expand the molecular orbitals in the determinants as a linear combination of atomic orbitals

$$
\begin{equation*}
\phi_{a}=\sum_{\mu} C_{\mu a} \chi_{\mu}(\mathbf{r}) . \tag{2.24}
\end{equation*}
$$

As we will see later, atomic orbitals are further approximated with a set of simpler functions that are also functions of the coordinates of a single electron. This three-step procedure is often referred to as the "standard model of quantum chemistry". To arrive at the exact solution, i) orbitals in terms of which the determinants are constructed must form a complete set in one-electron space, and ii) in the expansion of N-electron wave function, we must include all determinants that can be generated from these orbitals.

All approximations in the solution of the Schrödinger equation should be unambigious and precisely defined. Ideally, they should be improvable in a systematic fashion; and to yield more and more elaborate solutions that approach the exact solution. Thus we speak of different models, levels of theory and hierarchies of approximations.

Computational electronic-structure theory has a few standard models for the construction of approximate electronic wave functions. At the simplest level, the wave function is represented by a single Slater determinant (the Hartree-Fock approximation); and at the most complex level the wave function is represented as a variationally determined superposition of all determinants in the N-electron Fock space (full configuration-interaction, FCI).

Figure 2.2: The two-way hierarchy of approximate molecular wave functions

Between these extremes, there are a vast number of intermediate models with variable cost and accuracy.

It should be noted that none of the models is applicable to all systems. However, each model is applicable in a broad range of molecular systems, providing solutions of known quality and flexibility at a given computational cost.

2.5 Further reading

- D. P. Tew, W. Klopper, and T. Helgaker, Electron correlation: the many-body problem at the heart of chemistry, J. Comput. Chem. 28, 1307 (2007)

2.6 Exercises for Chapter 2

1. Here we consider, how the error in the energy can be estimated from the norm of the gradient.
(a) Show that the electronic energy, gradient and Hessian can be expanded around a stationary point as

$$
\begin{aligned}
E(\boldsymbol{\lambda}) & =E+\frac{1}{2} \boldsymbol{\lambda}^{T} \mathbf{E}^{(2)} \boldsymbol{\lambda}+\mathcal{O}\left(\|\boldsymbol{\lambda}\|^{3}\right) \\
\mathbf{E}^{(1)}(\boldsymbol{\lambda}) & =\mathbf{E}^{(2)} \boldsymbol{\lambda}+\mathcal{O}\left(\|\boldsymbol{\lambda}\|^{2}\right) \\
\mathbf{E}^{(2)}(\boldsymbol{\lambda}) & =\mathbf{E}^{(2)}+\mathcal{O}(\|\boldsymbol{\lambda}\|)
\end{aligned}
$$

In the above, $\boldsymbol{\lambda}$ is the vector containing the wave-function parameters; $\boldsymbol{\lambda}=\mathbf{0}$ represents the stationary point. E and $\mathbf{E}^{(2)}$ are the energy and the Hessian at $\boldsymbol{\lambda}=0$.
(b) Use these expansions to show that the errors in the wave function and in the energy are related to the gradient as

$$
\begin{aligned}
\boldsymbol{\lambda} & =\left[\mathbf{E}^{(2)}(\boldsymbol{\lambda})\right]^{-1} \mathbf{E}^{(1)}(\boldsymbol{\lambda})+\mathcal{O}\left(\left\|\mathbf{E}^{(1)}(\boldsymbol{\lambda})\right\|^{2}\right) \\
E(\boldsymbol{\lambda})-E & =\frac{1}{2}\left[\mathbf{E}^{(1)}(\boldsymbol{\lambda})\right]^{T}\left[\mathbf{E}^{(2)}(\boldsymbol{\lambda})\right]^{-1} \mathbf{E}^{(1)}(\boldsymbol{\lambda})+\mathcal{O}\left(\left\|\mathbf{E}^{(1)}(\boldsymbol{\lambda})\right\|^{3}\right)
\end{aligned}
$$

2. \star Consider the uniform scaling of the electron coordinates,

$$
\Psi\left(\mathbf{r}_{i}\right) \rightarrow \Psi_{\alpha}\left(\mathbf{r}_{i}\right)=\alpha^{3 N / 2} \Psi\left(\alpha \mathbf{r}_{i}\right) .
$$

Here α is a real scaling factor and N the number of electrons. We assume that $\Psi\left(\mathbf{r}_{i}\right)$ is normalized.
(a) Shot that the overlap is unaffected by the scaling, i.e.

$$
\left\langle\Psi_{\alpha} \mid \Psi_{\alpha}\right\rangle=1
$$

(b) Show that the expectation values of the kinetic and potential energies transform as

$$
\begin{array}{r}
\left\langle\Psi_{\alpha}\right| \hat{T}\left|\Psi_{\alpha}\right\rangle=\alpha^{2}\langle\Psi| \hat{T}|\Psi\rangle \\
\left\langle\Psi_{\alpha}\right| V(\mathbf{R})\left|\Psi_{\alpha}\right\rangle=\alpha\langle\Psi| V(\alpha \mathbf{R})|\Psi\rangle .
\end{array}
$$

3. \star Here, we will consider the use of correlating functions to describe the Coulomb cusp of many-electron systems. For a system with two electrons and K nuclei, with the Hamiltonian

$$
\begin{aligned}
\hat{H}= & \hat{T}+\hat{V}+\hat{g} \\
& \hat{T}=\hat{T}_{1}+\hat{T}_{2}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2} \\
& \hat{V}=\hat{V}_{1}+\hat{V}_{2}=-\sum_{I} \frac{Z_{I}}{\left|\mathbf{r}_{1}-\mathbf{R}_{I}\right|}-\sum_{I} \frac{Z_{I}}{\left|\mathbf{r}_{2}-\mathbf{R}_{I}\right|} \\
& \hat{g}=\frac{1}{r_{12}},
\end{aligned}
$$

write the wave function in the form $\Psi=\gamma \Phi$, where γ is a continuous correlating function that depends only on r_{12}, and Φ is a smooth function of \mathbf{r}_{1} and \mathbf{r}_{2}. The functions γ and Φ are, of course, finite.
(a) Show that the Schrödinger equation can be written in the form

$$
\hat{g} \gamma \Phi+[\hat{T}, \gamma] \Phi=(E-\hat{V}) \gamma \Phi-\gamma \hat{T} \Phi .
$$

(b) Consider the former result as $r_{12} \rightarrow 0$ and \hat{g} becomes singular. Assuming that the electrons and nuclei do not coincide, show that the singularity in \hat{g} must be compensated for by a singularity in $[\hat{T}, \gamma]$ such that $\hat{g} \gamma \Phi+[\hat{T}, \gamma]$ remains finite.
(c) Show that

$$
\left[\hat{T}, r_{12}\right]=-\frac{2}{r_{12}}-\frac{\mathbf{r}_{12}}{r_{12}} \cdot\left(\nabla_{1}-\nabla_{2}\right),
$$

and that for $n>1,\left[\hat{T}, r_{12}^{n}\right]$ contains no terms proportional to r_{12}^{-1}.
(d) Consider the expansion of $\gamma=1+\beta r_{12}+\mathcal{O}\left(r_{12}^{2}\right)$ around $r_{12}=0$; determine the parameter β such that $\hat{g} \gamma+[\hat{T}, \gamma]$ becomes nonsingular.
(e) For more than two electrons, we may again model the wave function by $\gamma \Phi$, where γ depends on the interelectronic coordinates $r_{i j}$ and where Φ is a smooth function of the electronic coordinates \mathbf{r}_{i}. Show that the form

$$
\gamma=1+\beta \sum_{i>j} r_{i j}
$$

eliminates the two-electron singularities in the many-electron Schrödinger equation if β is chosen as for the two-electron system.
(f) Determine, which of the following correlating functions remove the singularities at $r_{i j}=0$:

$$
\gamma=1+\beta \sum_{i>j} r_{i j}
$$

$$
\begin{aligned}
& \gamma=\prod_{i>j}\left(1+\beta r_{i j}\right) \\
& \gamma=\exp \left(\beta \sum_{i>j} r_{i j}\right) \\
& \gamma=1+\sum_{p} \alpha_{p} \exp \left(\beta_{p} \sum_{i>j} r_{i j}^{2}\right)
\end{aligned}
$$

Chapter 3

Molecular integral evaluation

3.1 Atomic basis functions

Molecular orbitals can be constructed either numerically or algebraically, of which the former provides greater flexibility and accuracy, but is tractable only for atoms and diatomic molecules; for polyatomic systems we are forced to expand the MOs $\phi_{a}(\mathbf{r})$ in a set of some simple analytical one-electron functions.

Perhaps surprisingly, it turns out that the hydrogenic functions Eq. (1.8) are not ideal for this purpose; as they do not constitute a complete set by themselves but must be supplemented by the unbounded continuum states. Secondly, they become very diffuse and a large number of them is needed for a proper description of both the core and valence regions of a many-electron atom, especially when located in a molecule.

Therefore, in the molecular electronic-structure theory, χ 's are usually functions of slightly more unphysical origin. Ideally, they should

1. allow orderly and systematic extension towards completeness with respect to oneelectron square-integrable functions
2. allow rapid convergence to any atomic or molecular electronic state, requiring only a few terms for a reasonably accurate description of molecular electronic distributions
3. have an analytical form for easy and accurate manipulation especially for molecular integrals
4. be orthogonal or at least their non-orthogonality should not pose problems related to numerical instability.

Let us begin by reviewing the properties of the hydrogenic functions. As we noted earlier, they are the bounded eigenfunctions of the Hamiltonian

$$
H=-\frac{1}{2} \nabla^{2}-\frac{Z}{r}
$$

and are written as

$$
\begin{aligned}
\chi_{n l m}(r, \theta, \varphi)= & \underbrace{\left(\frac{2 Z}{n}\right)^{3 / 2} \sqrt{\frac{(n-l-1)!}{2 n(n+1)!}}\left(\frac{2 Z r}{n}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 Z r}{n}\right) \exp \left(-\frac{Z r}{n}\right)}_{R_{n l}(r)} \\
& \times \underbrace{\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) \exp (\mathrm{i} m \varphi)}_{Y_{l m}(\theta, \varphi)} .
\end{aligned}
$$

The energy of the bounded hydrogenic state $\chi_{n l m}$ is given by

$$
\begin{equation*}
E_{n}=-\frac{Z^{2}}{2 n^{2}} \tag{3.1}
\end{equation*}
$$

The degeneracy of the hydrogenic states of different angular momenta - that is, $2 l+1$ degenerate states for every l - is peculiar to the spherical symmetry of the Coulomb potential and is lifted in a many-atom system. The notable features of the radial functions include

- the presence of the exponential
- that Laguerre polynomials introduce $n-l-1$ radial nodes in the wave function.

The diffusiveness of $\chi_{n l m}$ for large n is seen from the expectation value of \hat{r}

$$
\begin{equation*}
\left\langle\chi_{n l m}\right| \hat{r}\left|\chi_{n l m}\right\rangle=\frac{3 n^{2}-l(l+1)}{2 Z} \tag{3.2}
\end{equation*}
$$

In the following we consider basis functions that retain the product form of the hydrogenic wave functions but have a more compact radial part.

3.1.1 The Laguerre functions

In order to retain the correct exponential behavior but avoid the problems with continuum states we introduce the following class of functions:

$$
\begin{align*}
\chi_{n l m}^{\mathrm{LF}}(r, \theta, \varphi) & =R_{n l}^{\mathrm{LF}}(r) Y_{l m}(\theta, \varphi) \tag{3.3}\\
R_{n l}^{\mathrm{LF}} & =(2 \zeta)^{3 / 2} \sqrt{\frac{(n-l-1)!}{(n+l+1)!}}(2 \zeta r)^{l} L_{n-l-1}^{2 l+2}(2 \zeta r) \exp (-\zeta r), \tag{3.4}
\end{align*}
$$

referred to as the Laguerre functions. For fixed l and ζ the radial functions (3.4) with $n>l$ constitute a complete orthonormal set of functions, for which

$$
\begin{equation*}
\left\langle\chi_{n l m}^{\mathrm{LF}}\right| \hat{r}\left|\chi_{n l m}^{\mathrm{LF}}\right\rangle=\frac{2 n+1}{2 \zeta}, \tag{3.5}
\end{equation*}
$$

Figure 3.1: Lagurerre functions.
being thus considerably more compact than the hydrogenic functions for large n and independent of l. The Laguerre functions exhibit the same nodal structure as the hydrogenic ones but their radial distributions $R^{2} r^{2}$ are quite different ($\zeta=1 / n, Z=1$).

One should note that the orthogonality of the Laguerre functions is valid only with fixed exponents. It turns out, however, that the expansion of the orbital of a given l-value of an atomic system requires a large number of fixed-exponent Laguerre functions with different n. For non-orthogonal, variable-exponent functions Laguerre functions are not an optimal choice, but we need to introduce functions specifically tailored to reproduce as closely as possible the different orbitals of each atom.

3.1.2 Slater-type orbitals

In simplifying the polynomial structure of the Laguerre functions, we note that in $R_{n l}^{\mathrm{LF}} r$ occurs to power l and to powers $n-l-1$ and lower. Thus a nodeless one-electron function that resembles $\chi_{n l m}^{\mathrm{LF}}$ and the hydrogenic functions closely for large r is obtained by retaining in the Laguerre function only the term of the highest power of r, yielding the Slater-type orbitals (STO)

$$
\begin{align*}
\chi_{n l m}^{\mathrm{STO}}(r, \theta, \varphi) & =R_{n l}^{\mathrm{STO}}(r) Y(\theta, \varphi) \tag{3.6}\\
R_{n}^{\mathrm{STO}}(r) & =\frac{(2 \zeta)^{3 / 2}}{\sqrt{\Gamma(2 n+1)}}(2 \zeta r)^{n-1} \exp (-\zeta r) \tag{3.7}
\end{align*}
$$

For the STOs we use the same $1 s, 2 p, \ldots$ notation as for the hydrogenic functions, keeping in mind that STOs are nodeless and now n only refers to the monomial factor r^{n-1}. The expectation value of \hat{r} and the maximum in the radial distribution curve are given by

$$
\begin{align*}
\left\langle\chi_{n l m}^{\mathrm{STO}}\right| \hat{r}\left|\chi_{n l m}^{\mathrm{STO}}\right\rangle & =\frac{2 n+1}{2 \zeta} \tag{3.8}\\
r_{\max }^{\mathrm{STO}} & =\frac{n}{\zeta} \tag{3.9}
\end{align*}
$$

Also STOs would constitute a complete set of functions for a fixed exponent ζ, and we could choose to work with a single exponent and include in our basis orbitals ($1 s, 2 s, \ldots$), $(2 p, 3 p, \ldots),(3 d, 4 d, \ldots)$, all with the same exponent. Alternatively, we may describe the radial space by functions with variable exponents. For each l, we employ only the functions
of the lowest n, yielding a basis of the type $\left(\left(1 s\left(\zeta_{1 s}\right), 1 s\left(\zeta_{2 s}\right), \ldots\right),\left(2 p\left(\zeta_{1 p}, 2 p\left(\zeta_{2 p}\right), \ldots\right), \ldots\right)\right.$ These variable-exponent STOs are given by

$$
\begin{align*}
\chi_{\zeta_{n l} l m}(r, \theta, \varphi) & =R_{\zeta_{n l} l}^{\mathrm{STO}}(r) Y_{l m}(\theta, \varphi) \tag{3.10}\\
R_{\zeta_{n l} l}^{\mathrm{STO}} & =\frac{\left(2 \zeta_{n l}\right)^{3 / 2}}{\sqrt{(2 l+2)!}}\left(2 \zeta_{n l} r\right)^{l} \exp \left(-\zeta_{n l} r\right) \tag{3.11}
\end{align*}
$$

In practice, a combined approach is employed. For example, for the carbon atom, we would introduce sets of $1 s, 2 s$ and $2 p$ functions, all with variable exponents that are chosen to ensure an accurate representation of the wave function.

3.1.3 Gaussian-type orbitals

The STO basis sets are very successful for atoms and diatomic molecules, but the evaluation of many-center two-electron integrals becomes very complicated in terms of them. The basis sets that have established to be the standard practice in molecular electronic-structure theory are less connected to the hydrogenic functions or actual charge distributions in molecules. They are called Gaussian-type orbitals (GTO) as they employ the Gaussian distributions $\exp \left(-\alpha r^{2}\right)$ instead of the $\exp (-\zeta r)$ as in STOs. A large number of GTOs are needed to describe an STO (or an AO) properly, but this is more than compensated by a fast evaluation of the molecular integrals.

The spherical-harmonic GTOs are

$$
\begin{align*}
\chi_{n l m}^{\mathrm{GTO}}(r, \theta, \varphi) & =R_{n l}^{\mathrm{GTO}}(r) Y_{l m}(\theta, \varphi) \tag{3.12}\\
R_{n l}^{\mathrm{GTO}}(r) & =\frac{2(2 \alpha)^{3 / 4}}{\pi^{1 / 4}} \sqrt{\frac{2^{2 n-l-2}}{(4 n-2 l-3)!!}}(\sqrt{2 \alpha} r)^{2 n-l-2} \exp \left(-\alpha r^{2}\right) . \tag{3.13}
\end{align*}
$$

They form a complete set of nonorthogonal basis functions. In above, the double factorial function is

$$
n!!=\left\{\begin{array}{cc}
1 & n=0 \tag{3.14}\\
n(n-2)(n-4) \cdots 2 & \text { even } n>0 \\
n(n-2)(n-4) \cdots 1 & \text { odd } n>0 \\
\frac{1}{(n+2)(n+4) \cdots 1} & \text { odd } n<0
\end{array}\right.
$$

The spatial extent of the GTOs are

$$
\begin{align*}
\left\langle\chi_{n l m}^{\mathrm{GTO}}\right| \hat{r}\left|\chi_{n l m}^{\mathrm{GTO}}\right\rangle & \approx \sqrt{\frac{2 n-l-2}{2 \alpha}} \tag{3.15}\\
r_{\max }^{\mathrm{GTO}} & =\sqrt{\frac{2 n-l-1}{2 \alpha}} \tag{3.16}
\end{align*}
$$

When we compare these results with the case of STOs, we note that much larger number of GTOs are needed for a flexible description of outer regions of the electron distribution.

Figure 3.2: Slater and Gaussian-type orbitals compared.

In practice, the use of GTOs with variable exponents differs from the procedure for STOs. For GTOs, we describe the radial space exclusively by means of variable exponents, using for this purpose only spherical-harmonic GTOs with $n=l+1$, only powers of r introduced are thus associated with l of the spherical harmonics. The following set of spherical-harmonic GTOs is used:

$$
\begin{align*}
\chi_{\alpha_{n l} l m}^{\mathrm{GTO}}(r, \theta, \varphi) & =R_{\alpha_{n l} l}^{\mathrm{GTO}}(r) Y_{l m}(\theta, \varphi) \tag{3.17}\\
R_{\alpha_{n l} l}^{\mathrm{GTO}}(r) & =\frac{2\left(2 \alpha_{n l}\right)^{3 / 4}}{\pi^{1 / 4}} \sqrt{\frac{2^{2 n-l-2}}{(4 n-2 l-3)!!}}(\sqrt{2 \alpha} r)^{2 n-l-2} \exp \left(-\alpha r^{2}\right) . \tag{3.18}
\end{align*}
$$

Let us finally consider the Gaussian product rule, that is the one of the main reasons why GTOs are so widely used. The product of two s GTOs $\chi_{A}=\exp \left(-\alpha r_{A}^{2}\right)$ and $\chi_{B}=$ $\exp \left(-\beta r_{B}^{2}\right)$ centered on \mathbf{r}_{A} and \mathbf{r}_{B} is a third Gaussian

$$
\begin{equation*}
\chi_{A} \chi_{B}=\chi_{C}=\exp \left(-\frac{\alpha \beta}{\alpha+\beta} r_{A B}^{2}\right) \exp \left[-(\alpha+\beta) r_{C}^{2}\right] \tag{3.19}
\end{equation*}
$$

centered on \mathbf{r}_{C} given by

$$
\mathbf{r}_{C}=\frac{\alpha \mathbf{r}_{A}+\beta \mathbf{r}_{B}}{\alpha+\beta}
$$

3.2 Gaussian basis sets

Of the three general features determining the accuracy of quantum chemical methods-the choice of the Hamiltonian, electron correlation treatment or truncation of the many-particle space, and the description of the one-particle space, i.e., the basis set used-the choice of the basis set is the most crucial one, as insufficient basis sets yield erroneous results regardless of the level of theory, whereas with a proper basis set, at least qualitatively correct results
can be obtained for many problems already at the uncorrelated level of theory and using the non-relativistic Hamiltonian.

The majority of quantum chemical applications employ contracted GTO (CGTO) sets, i.e. linear combinations of GTO functions with coefficients optimized regarding some criterion (usually SCF energy) that significantly increase efficiency. There are two widely used contraction schemes: segmented contraction, where each GTO contributes only to a single CGTO, and general contraction, where such a restriction is not applied. Examples of the segmented scheme include the Pople-style basis set families (3-21G, 6-31G,...) and the Karlsruhe basis sets. The correlation-consistent (cc) basis set families by Dunning and coworkers are the most widely used generally contracted basis sets. The basic idea behind the cc sets is that functions that contribute approximately the same amount to the correlation energy are added to the basis in groups. The cc basis sets provide smooth, monotonic convergence for the electronic energy as well as for many molecular properties, especially those originating in the valence region. The polarized valence (cc-pVXZ, $\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}, 5$, 6 corresponding to the number of CGTOs used to represent an occupied atomic orbital) and core-valence (cc-pCVXZ) sets can be augmented with diffuse functions (aug-cc-pVXZ and aug-cc-pCVXZ; d-aug-cc-pVXZ and t-aug-cc-pVXZ for doubly and triply augmented sets, respectively). While these features are favorable and the sets are widely used, the ccbasis sets become very large at large X , and it is not straightforward to extend the family beyond the published X values or to new elements. The atomic natural orbital (ANO) basis sets provide another general contraction approach. The contraction coefficients therein are atomic ANO coefficients that are obtained by optimizing atomic energies.

The use of increasingly large basis sets that produce results converging to some particular value is usually regarded as a solution to the problem of basis set incompleteness. In calculations of molecular properties that originate, e.g., in the region close to the nuclei (examples include indirect spin-spin couplings and hyperfine couplings), approaching the basis-set limit using the cc or comparable energy-optimized paradigms may lead to excessively large basis sets prohibiting calculations of large molecules. An alternative and often used approach is to uncontract the basis set and to supplement it by additional steep basis functions in the l-shells relevant for the property under examination.

The performance of the different basis sets for a certain molecular property can be qualitatively understood within a concept, which can be measured by the completeness profiles

$$
\begin{equation*}
Y(\alpha)=\sum_{m}\left\langle g(\alpha) \mid \chi_{m}\right\rangle^{2} . \tag{3.20}
\end{equation*}
$$

Here $\{\chi\}$ denotes a set of orthonormalized, contracted or primitive, basis functions, and $g(\alpha)$ is a primitive "test" GTO with the exponent α, used to probe the completeness of $\{\chi\}$. The completeness profile becomes unity for all α, for all l-values in a CBS. $Y(\alpha)$ is typically plotted in the logarithmic scale, against $x=\log \alpha$. In a certain exponent interval $\left[\alpha_{\min }, \alpha_{\max }\right]$ this quantity is intuitively connected to the possibility - from the point of view of one-particle space - of describing all details of the wave function in the corresponding distance range from the atomic nuclei. Put simply, atomic properties that

Figure 3.3: Completeness profiles of (a) cc-pVDZ (b) cc-pVTZ (c) cc-pVQZ (d) cc-pV5Z (e) cc-pV6Z (f) cc-pCVTZ (g) aug-cc-pVTZ and (h) aug-cc-pCVTZ basis sets of fluorine.
obtain relevant contributions roughly within $\left[1 / \sqrt{\alpha_{\max }}, 1 / \sqrt{\alpha_{\text {min }}}\right]$ from the nucleus can be reproduced by a basis that has $Y(\alpha)=1$ in this interval. This way of thinking can be generalized to molecular properties that may be dominated by phenomena occurring close to the expansion centers of the basis functions, i.e., atomic nuclei (region described by high-exponent basis functions) and/or in the valence region, further away from the nuclei.

3.3 Integrals over Gaussian basis sets

In the following, we will evaluate the one- and two-electron integrals

$$
\begin{equation*}
O_{\mu \nu}=\left\langle\chi_{\mu} \mid \hat{O}\right\rangle \chi_{\nu}=\int d \mathbf{r} \chi_{\mu}(\mathbf{r}) \hat{O}(\mathbf{r}) \chi_{\nu}(\mathbf{r}) \tag{3.21}
\end{equation*}
$$

$$
\begin{align*}
O_{\mu \nu \lambda \sigma} & =\left\langle\chi_{\mu}(1) \chi_{\nu}(1) \mid \hat{O}\right\rangle \chi_{\lambda}(2) \chi_{\sigma}(2) \\
& =\int d \mathbf{r}_{1} d \mathbf{r}_{2} \chi_{\mu}\left(\mathbf{r}_{1}\right) \chi_{\nu}\left(\mathbf{r}_{1}\right) \hat{O}(\mathbf{r}) \chi_{\lambda}\left(\mathbf{r}_{2}\right) \chi_{\sigma}\left(\mathbf{r}_{2}\right) \tag{3.22}
\end{align*}
$$

such that the AOs (χ) are taken as fixed linear combinations of real-valued primitive Cartesian GTOs

$$
\begin{equation*}
G_{i j k}(\mathbf{r}, a, \mathbf{R})=x_{R}^{i} y_{R}^{j} z_{R}^{k} \exp \left(-a r_{R}^{2}\right), \tag{3.23}
\end{equation*}
$$

where the "Cartesian quantum numbers" i, j, k are greater than zero and $l=i+j+k$ for a given total angular momentum quantum number.

The integrals over primitive Cartesian GTOs may subsequently be transformed to integrals over contracted and/or spherical-harmonic GTOs by linear combinations.

3.3.1 Gaussian overlap distributions

An important property of the primitive Cartesian GTOs is that they can be factorized in the three Cartesian directions,

$$
\begin{equation*}
G_{i j k}(\mathbf{r}, a, R)=G_{i}\left(x, a, R_{x}\right) G_{j}\left(y, a, R_{y}\right) G_{z}\left(z, a, R_{z}\right) \tag{3.24}
\end{equation*}
$$

where for example $G_{i}\left(x, a, R_{x}\right)=x_{R}^{i} \exp \left(-a x_{R}^{2}\right)$. We will need also a concept of Gaussian overlap distribution

$$
\begin{equation*}
\Omega_{a b}(\mathbf{r})=G_{i j k}\left(\mathbf{r}, a, \mathbf{R}_{A}\right) G_{l m n}\left(\mathbf{r}, b, \mathbf{R}_{B}\right), \tag{3.25}
\end{equation*}
$$

that may also be factorized in the same way

$$
\begin{equation*}
\Omega_{a b}(\mathbf{r})=\Omega_{i j}^{x}\left(x, a, b, R_{A, x}, R_{B, x}\right) \Omega_{k l}^{y}\left(y, a, b, R_{A, y}, R_{B, y}\right) \Omega_{m n}^{z}\left(z, a, b, R_{A, z}, R_{B, z}\right), \tag{3.26}
\end{equation*}
$$

where the x component (for example) is given by

$$
\begin{equation*}
\Omega_{i j}^{x}\left(x, a, b, R_{A, x}, R_{B, x}\right)=G_{i}\left(x, a, R_{A, x}\right) G_{j}\left(x, b, R_{B, x}\right) . \tag{3.27}
\end{equation*}
$$

3.3.2 Simple one-electron integrals

We are now ready to consider simple one-electron integrals, by which we mean molecular integrals that do not involve the singular Coulombic $1 / r$ interaction. All such integrals can be factorized in the three directions as

$$
\begin{equation*}
S_{a b}=S_{i j} S_{k l} S_{m n} \tag{3.28}
\end{equation*}
$$

According to the Gaussian product rule (3.19), any Cartesian component of the overlap distribution can be written as a single Gaussian at the centre of charge P_{x}, and we may thus evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \Omega_{00}^{x} d x=\exp \left(-\mu X_{A B}^{2}\right) \int_{-\infty}^{\infty} \exp \left(-p x_{p}^{2}\right) d x=\sqrt{\frac{\pi}{p}} \exp \left(-\mu X_{A B}^{2}\right) \tag{3.29}
\end{equation*}
$$

where μ denotes the reduced exponent $a b /(a+b), p=a+b$, and

$$
\begin{align*}
P_{x} & =\frac{a R_{A, x}+b R_{B, x}}{p} \tag{3.30}\\
X_{A B} & =R_{A, x}-R_{B, x} . \tag{3.31}
\end{align*}
$$

This result provides a basis for a set of recurrence relations by which we may evaluate simple integrals - overlap or more complicated ones - over GTOs of arbitrary quantum numbers. This procedure is known as Obara-Saika scheme. There exist other methods for molecular integral evaluation but we will not discuss them here. The relations are obtained by considering the behaviour of the integral under coordinate transformation and their detailed derivation is omitted here but recommended further reading.

The simplest case is the overlap integral

$$
\begin{equation*}
S_{a b}=\left\langle G_{a} \mid G_{b}\right\rangle \tag{3.32}
\end{equation*}
$$

for an Cartesian component of which the Obara-Saika relations are written as

$$
\begin{align*}
S_{i+1, j} & =X_{P A} S_{i j}+\frac{1}{2 p}\left(i S_{i-1, j}+j S_{i, j-1}\right) \tag{3.33}\\
S_{i, j+1} & =X_{P B} S_{i j}+\frac{1}{2 p}\left(i S_{i-1, j}+j S_{i, j-1}\right) \tag{3.34}
\end{align*}
$$

For the linear and angular momentum as well as for kinetic energy integrals we need the integrals over differential operators

$$
\begin{equation*}
D_{a b}^{e f g}=\left\langle G_{a}\right| \frac{\partial^{e}}{\partial x^{e}} \frac{\partial^{f}}{\partial y^{f}} \frac{\partial^{g}}{\partial z^{g}}\left|G_{b}\right\rangle . \tag{3.35}
\end{equation*}
$$

In one direction the relations are

$$
\begin{align*}
D_{i+1, j}^{e} & =X_{P A} D_{i j}^{e}+\frac{1}{2 p}\left(i D_{i-1, j}^{e}+j D_{i, j-1}^{e}-2 b e D_{i j}^{e-1}\right) \tag{3.36}\\
D_{i+1, j}^{e} & =X_{P B} D_{i j}^{e}+\frac{1}{2 p}\left(i D_{i-1, j}^{e}+j D_{i, j-1}^{e}+2 a e D_{i j}^{e-1}\right) \tag{3.37}
\end{align*}
$$

with the $e=0$ case providing the starting point and being equivalent with the overlap integral.

3.3.3 The Boys function

We will now introduce a special function that has a key role in the evaluation of one- and two-electron Coulomb integrals, the Boys function of order n, defined as

$$
\begin{equation*}
F_{n}(x)=\int_{0}^{1} \exp \left(-x t^{2}\right) t^{2 n} d t \tag{3.38}
\end{equation*}
$$

Figure 3.4: The three lowest-order Boys functions. The zeroth-order function in cyan, first-order in blue and second-order in dark blue.

The Boys functions of orders 0,1 and 2 are illustrated in Figure 3.4. It is a strictly positive and decreasing function. Its values at $x=0$ have a closed-form expression

$$
\begin{equation*}
F_{n}(0)=\int_{0}^{1} t^{2 n} d t=\frac{1}{2 n+1} . \tag{3.39}
\end{equation*}
$$

Different methods for evaluating the Boys function has been introduced. One way is through recursion; by integrating the function by parts, we see that the different orders are related by

$$
\begin{equation*}
F_{n+1}(x)=\frac{(2 n+1) F_{n}(x)-\exp (-x)}{2 x} \tag{3.40}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{n}(x)=\frac{2 x F_{n+1}(x)-\exp (-x)}{2 n+1} \tag{3.41}
\end{equation*}
$$

We would therefore need to calculate the Boys function for the highest or the lowest order needed, and the others are obtained through the downward or upward recursion, of which the former is numerically more robust.

3.3.4 Obara-Saika scheme for one-electron Coulomb integrals

The Cartesian one-electron Coulomb integrals,

$$
\begin{equation*}
V_{a b}=\left\langle G_{a}\right| r_{C}^{-1}\left|G_{b}\right\rangle=\int \frac{\Omega_{a b}(\mathbf{r})}{r_{C}} d \mathbf{r}, \tag{3.42}
\end{equation*}
$$

needed for the one-electron part of the molecular Hamiltonian, may also be evaluated by using the Obara-Saika recursion relations.

We again factorize the distribution according to (3.26), and are about to obtain the integrals through the recursion relations (c.f., below) for auxillary integrals $\Theta_{i j k l m n}^{N}$:

$$
\begin{align*}
\Theta_{i+1 j k l m n}^{N}= & X_{P A} \Theta_{i j k l m n}^{N}+\frac{1}{2 p}\left(i \Theta_{i-1 j k l m n}^{N}+j \Theta_{i j-1 k l m n}^{N}\right) \\
& -X_{P C} \Theta_{i j k l m n}^{N+1}-\frac{1}{2 p}\left(i \Theta_{i-1 j k l m n}^{N+1}+j \Theta_{i j-1 k l m n}^{N+1}\right) \tag{3.43}\\
\Theta_{i j+1 k l m n}^{N}= & X_{P B} \Theta_{i j k l m n}^{N}+\frac{1}{2 p}\left(\Theta_{i-1 j k l m n}^{N}+j \Theta_{i j-1 k l m n}^{N}\right) \\
& -X_{P C} \Theta_{i j k l m n}^{N+1}-\frac{1}{2 p}\left(i \Theta_{i-1 j k l m n}^{N+1}+j \Theta_{i j-1 k l m n}^{N+1}\right) \tag{3.44}
\end{align*}
$$

with the special cases (that also serve the starting points of the recursion)

$$
\begin{align*}
\Theta_{i j k l m n}^{0} & =V_{i j k l m n}=V_{a b} \tag{3.45}\\
\Theta_{000000}^{N} & =\frac{2 \pi}{p} K_{a b}^{x y z} F_{N}\left(p R_{P C}^{2}\right), \tag{3.46}
\end{align*}
$$

where F_{N} is the Boys function, and we have denoted

$$
\begin{equation*}
K_{a b}^{x}=\exp \left(-\mu X_{A B}^{2}\right) . \tag{3.47}
\end{equation*}
$$

3.3.5 Obara-Saika scheme for two-electron Coulomb integrals

The evaluation of electron-electron repulsion integrals is a highly non-trivial task and due to their bottleneck status, under intense study since the early days of quantum chemistry. We will discuss here only one of the numerous schemes that is in accordance with the earlier discussion, namely the Obara-Saika scheme for Cartesian two-electron integrals,

$$
\begin{equation*}
g_{a b c d}=\left\langle G_{a}\left(\mathbf{r}_{1}\right) G_{b}\left(\mathbf{r}_{1}\right)\right| r_{12}^{-1}\left|G_{c}\left(\mathbf{r}_{2}\right) G_{d}\left(\mathbf{r}_{2}\right)\right\rangle=\iint \frac{\Omega_{a b}\left(\mathbf{r}_{1}\right) \Omega_{c d}\left(\mathbf{r}_{2}\right)}{r_{12}} d \mathbf{r}_{1} d \mathbf{r}_{2} \tag{3.48}
\end{equation*}
$$

The relations feature similarly to the one-electron corresponds a set of auxillary integrals Θ. Again, two special cases of them are required:

$$
\begin{align*}
\Theta_{000000000000}^{N} & =\frac{2 \pi^{5 / 2}}{p q \sqrt{p+q}} K_{a b}^{x y z} K_{c d}^{x y z} F_{N}\left(\alpha R_{P Q}^{2}\right) \tag{3.49}\\
\Theta_{i_{x} j_{x} k_{x} l_{x} i_{y} j_{y} k_{y} l_{y} i_{z} j_{z} k_{z} l_{z}}^{0} & =g_{i_{x} j_{x} k_{x} l_{x} i_{y} j_{y} k_{y} l_{y} i_{y} i_{z} j_{z} k_{z} l_{z}}=g_{a b c d} . \tag{3.50}
\end{align*}
$$

In the above, we have denoted $K_{a b}^{x y z}=K_{a b}^{x} K_{a b}^{y} K_{a b}^{z}$ [c.f. Eq. (3.47)] and α is the reduced exponent $p q /(p+q) . F_{N}$ is again the Boys function. In the following, the indices i, j, k and l are the Cartesian quantum numbers for orbitals a, b, c and d in the x-direction. Starting from these, first a set of integrals with $j=k=l=0$ is generated by

$$
\begin{equation*}
\Theta_{i+1000}=X_{\mathrm{PA}} \Theta_{i 000}^{N}-\frac{\alpha}{p} X_{\mathrm{PQ}} \Theta_{i 000}^{N+1}+\frac{i}{2 p}\left(\Theta_{i-1000}^{N}-\frac{\alpha}{p} \Theta_{i-1000}^{N+1}\right) . \tag{3.51}
\end{equation*}
$$

Then, the second electron is treated using the integrals generated in (3.51):

$$
\begin{equation*}
\Theta_{i 0 k+10}=-\frac{b X_{\mathrm{AB}}+d X_{\mathrm{CD}}}{q} \Theta_{i 0 k 0}^{N}-\frac{i}{2 q} \Theta_{i-10 k 0}^{N}+\frac{k}{2 q} \Theta_{i 0 k-10}^{N}-\frac{p}{q} \Theta_{i+10 k 0}^{N} . \tag{3.52}
\end{equation*}
$$

In the final step, the Cartesian powers are "transferred" between the orbitals of the same electron:

$$
\begin{align*}
\Theta_{i j+1 k l} & =\Theta_{i+1 j k l}+X_{\mathrm{AB}} \Theta_{i j k l}^{N} \tag{3.53}\\
\Theta_{i j k l+1} & =\Theta_{i j k+1 l}+X_{\mathrm{CD}} \Theta_{i j k l}^{N} . \tag{3.54}
\end{align*}
$$

In this way, we may construct the full set of Cartesian two-electron Coulomb integrals.

3.4 Further reading

- T. Helgaker and P. Taylor, Gaussian basis sets and molecular integrals, in Modern Electronic Structure Theory, Part II, D. R. Yarkony (ed.), (World Scientific 1995), pp. 725-856
- R. Lindh, Integrals of electron repulsion, in P. v. R. Schleyer et al. (eds.), Encyclopedia of Computational Chemistry Vol. 2, (Wiley 1998) p. 1337.
- M. C. Strain, G. E. Scuseria and M. J. Frisch, Achieving linear scaling for the electronic quantum Coulomb problem, Science 271, 51 (1996).
- S. Obara and M. Saika, Efficient recursive computation of molecular integrals over Cartesian Gaussian functions, Journal of Chemical Physics 84, 3963 (1986); 89, 1540 (1988).

3.5 Exercises for Chapter 3

1. Verify the expressions for radial extents

$$
\langle r\rangle=\int_{0}^{\infty} R_{n l}(r) r R_{n l}(r) r^{2} d r
$$

of (a) the hydrogenic wave functions, (b) the Laguerre functions, (c) the radial STOs.
2 . \star In this exercise, we study the radial form of the GTOs, the most frequently used basis functions in molecular electronic-structure theory:

$$
R_{\alpha l}^{\mathrm{GTO}}(r)=N_{\alpha l}^{\mathrm{GTO}}(\sqrt{2 \alpha} r)^{l} \exp \left(-\alpha r^{2}\right) .
$$

The related functions $R_{n l}^{\mathrm{GTO}}$ are obtained by replacing l by $2 n-l-2$.
(a) Using the integral

$$
\int_{0}^{\infty} x^{2 n} \exp \left(-\alpha x^{2}\right) d x=\frac{(2 n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{\alpha^{2 n+1}}}, \quad n \geq 0, \alpha>0
$$

verify that the normalization constant $N_{\alpha l}^{\text {GTO }}$ is given by

$$
N_{\alpha l}^{\mathrm{GTO}}=\frac{2(2 \alpha)^{3 / 4}}{\pi^{3 / 4}} \sqrt{\frac{2^{l}}{(2 l+1)!!}} .
$$

(b) Determine the radial overlap between two GTOs:

$$
S_{\alpha_{1} \alpha_{2} l}=\int_{0}^{\infty} R_{\alpha_{1} l}^{\mathrm{GTO}}(r) R_{\alpha_{2} l}^{\mathrm{GTO}}(r) r^{2} d r
$$

(c) By setting $\alpha_{2}=\beta \alpha_{1}$ verify that the overlap $S_{\alpha_{1} \beta \alpha_{1} l}$ is independent of α_{1}.
(d) Using the integral

$$
\int_{0}^{\infty} x^{2 n+1} \exp \left(-\alpha x^{2}\right) d x=\frac{n!}{2 \alpha^{n+1}} n \geq 0, \alpha>0
$$

show that the expectation value of r is

$$
\langle r\rangle=\int_{0}^{\infty} R_{\alpha l}^{\mathrm{GTO}}(r) r R_{\alpha l}^{\mathrm{GTO}}(r) r^{2} d r=\sqrt{\frac{2}{\pi \alpha}} \frac{2^{l}(l+1)!}{(2 l+1)!!} .
$$

(e) Use the Stirling approximation for factorials $k!\sim k^{k+1 / 2} \sqrt{2 \pi} e^{-k}(k \gg 1)$ to show that $\langle r\rangle$ is for large l

$$
\langle r\rangle \sim \sqrt{\frac{l}{2 \alpha}}
$$

(f) Verify that the radial distribution function $4 \pi r^{2}\left[R_{\alpha l}^{\mathrm{GTO}}(r)\right]^{2}$ has a maximum at

$$
r_{\max }^{\mathrm{GTO}}=\sqrt{\frac{l+1}{2 \alpha}} .
$$

(g) Consider two GTOs of different l and exponents. Determine the relation between α_{1} and α_{2} so that the radial distribution of these GTOs have the same maximum.
3. Using the Obara-Saika scheme, evaluate the self-overlap integrals $\left\langle p_{x} \mid p_{x}\right\rangle$ and $\left\langle d_{x^{2}} \mid d_{x^{2}}\right\rangle$.
4. Construct the Obara-Saika recursion relations for kinetic-energy integrals

$$
T_{a b}=-\frac{1}{2}\left\langle G_{a}\right| \nabla^{2}\left|G_{b}\right\rangle .
$$

5. * Derive the Obara-Saika relations for overlap and differential operator integrals, Eqs. (3.33-3.34) and (3.36-3.37).

Chapter 4

Second quantization

4.1 Fock space

We now introduce an abstract linear vector space - the Fock space - where each Slater determinant (1.20) of M orthonormal spin-orbitals is represented by an occupation number vector (ON) \mathbf{k},

$$
|\mathbf{k}\rangle=\left|k_{1}, k_{2}, \ldots, k_{M}\right\rangle, \quad k_{P}=\left\{\begin{array}{cc}
1 & \psi_{P} \text { occupied } \tag{4.1}\\
0 & \psi_{P} \text { unoccupied }
\end{array}\right.
$$

For an orthonormal set of spin-orbitals, we define the inner product between two ON vectors as

$$
\begin{equation*}
\langle\mathbf{m} \mid \mathbf{k}\rangle=\prod_{P=1}^{M} \delta_{m_{P} k_{P}} \tag{4.2}
\end{equation*}
$$

This definition is consistent with the overlap between two Slater determinants, but has a well-defined but zero overlap between states with different electron numbers is a special feature of the Fock-space formulation. It allows for a unified description of systems with variable numbers of electrons.

- In a given spin-orbital basis, there is a one-to-one mapping between the Slater determinants with spin-orbitals in a canonical order and the ON vectors in the Fock space.
- However, ON vectors are not Slater determinants: ON vectors have no spatial structure but are just basis vectors in an abstract vector space.
- The Fock space can be manipulated as an ordinary inner-product vector space.

The ON vectors constitute an orthonormal basis in the 2^{M} dimensional Fock space $F(M)$, that can be decomposed as a direct sum of subspaces,

$$
\begin{equation*}
F(M)=F(M, 0) \oplus F(M, 1) \oplus \cdots \oplus F(M, N), \tag{4.3}
\end{equation*}
$$

where $F(M, N)$ contains all ON vectors obtained by distributing N electrons among the M spin-orbitals, in other words, all ON vectors for which the sum of occupation number is N. The subspace $F(M, 0)$ is the vacuum state,

$$
\begin{equation*}
|\mathrm{vac}\rangle=\left|0_{1}, 0_{2}, \ldots, 0_{M}\right\rangle \tag{4.4}
\end{equation*}
$$

Approximations to an exact N-electron wave function are expressed in terms of vectors in the Fock subspace $F(M, N)$ of dimension equal to $\binom{M}{N}$.

4.1.1 Creation and annihilation operators

In second quantization, all operators and states can be constructed from a set of elementary creation and annihilation operators. The M creation operators are defined by

$$
\begin{align*}
a_{P}^{\dagger}\left|k_{1}, k_{2}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle & =\Gamma_{P}^{\mathbf{k}}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle \tag{4.5}\\
a_{P}^{\dagger}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle & =0 \tag{4.6}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma_{P}^{\mathbf{k}}=\prod_{Q=1}^{P-1}(-1)^{k_{Q}} . \tag{4.7}
\end{equation*}
$$

The definition can be also combined a single equation:

$$
\begin{equation*}
a_{P}^{\dagger}\left|k_{1}, k_{2}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle=\delta_{k_{P} 0} \Gamma_{P}^{\mathbf{k}}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle \tag{4.8}
\end{equation*}
$$

Operating twice with a_{P}^{\dagger} on an ON vector gives

$$
a_{P}^{\dagger} a_{P}^{\dagger}\left|k_{1}, k_{2}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle=a_{P}^{\dagger} \delta_{k_{P} 0} \Gamma_{P}^{\mathbf{k}}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle=0
$$

therefore

$$
\begin{equation*}
a_{P}^{\dagger} a_{P}^{\dagger}=0 . \tag{4.9}
\end{equation*}
$$

For $Q>P$,

$$
\begin{aligned}
a_{P}^{\dagger} a_{Q}^{\dagger}\left|\ldots, k_{P}, \ldots, k_{Q}, \ldots\right\rangle & =a_{P}^{\dagger} \delta_{k_{Q} 0} \Gamma_{Q}^{\mathbf{k}}\left|\ldots, k_{P}, \ldots, 1_{Q}, \ldots\right\rangle \\
& =\delta_{k_{P} 0} \delta_{k_{Q} 0} \Gamma_{P}^{\mathbf{k}} \Gamma_{Q}^{\mathbf{k}}\left|\ldots, 1_{P}, \ldots, 1_{Q}, \ldots\right\rangle .
\end{aligned}
$$

Reversing the order of the operators,

$$
\begin{aligned}
a_{Q}^{\dagger} a_{P}^{\dagger}\left|\ldots, k_{P}, \ldots, k_{Q}, \ldots\right\rangle & =a_{Q}^{\dagger} \delta_{k_{P} 0} \Gamma_{P}^{\mathbf{k}}\left|\ldots, 1_{P}, \ldots, k_{Q}, \ldots\right\rangle \\
& =\delta_{k_{P} 0} \delta_{k_{Q} 0} \Gamma_{P}^{\mathrm{k}}\left(-\Gamma_{Q}^{\mathbf{k}}\right)\left|\ldots, 1_{P}, \ldots, 1_{Q}, \ldots\right\rangle
\end{aligned}
$$

and combining the results, we obtain

$$
a_{P}^{\dagger} a_{Q}^{\dagger}+a_{Q}^{\dagger} a_{P}^{\dagger}|\mathbf{k}\rangle=0 .
$$

Substitution of dummy indices shows that this holds for $Q<P$ as well, and is true also for $Q=P$. Since $|\mathbf{k}\rangle$ is an arbitrary ON vector, we conclude the anticommutation relation

$$
\begin{equation*}
a_{P}^{\dagger} a_{Q}^{\dagger}+a_{Q}^{\dagger} a_{P}^{\dagger}=\left[a_{P}^{\dagger}, a_{Q}^{\dagger}\right]_{+}=0 \tag{4.10}
\end{equation*}
$$

The properties of the adjoint or conjugate operators a_{P} can be reasoned from those of the creation operators. Thus, the adjoint operators satisfy the anticommutation relation

$$
\begin{equation*}
\left[a_{P}, a_{Q}\right]_{+}=0 \tag{4.11}
\end{equation*}
$$

Let us invoke the resolution of the identity:

$$
a_{P}|\mathbf{k}\rangle=\sum_{\mathbf{m}}|\mathbf{m}\rangle\langle\mathbf{m}| a_{P}|\mathbf{k}\rangle,
$$

where, using Eq. (4.8),

$$
\langle\mathbf{m}| a_{P}|\mathbf{k}\rangle=\langle\mathbf{k}| a_{P}|\mathbf{m}\rangle^{*}=\left\{\begin{array}{cc}
\delta_{m_{P} 0} \Gamma_{P}^{\mathbf{m}} & \text { if } k_{Q}=m_{Q}+\delta_{Q P} \\
0 & \text { otherwise }
\end{array} .\right.
$$

From the definition of Γ and from $k_{Q}=m_{Q}+\delta_{Q P}$ we see that $\Gamma_{P}^{\mathrm{m}}=\Gamma_{P}^{\mathrm{K}}$. We may therefore write the equation as

$$
\langle\mathbf{m}| a_{P}|\mathbf{k}\rangle=\left\{\begin{array}{cc}
\delta_{k_{P} 1} \Gamma_{P}^{\mathbf{k}} & \text { if } m_{Q}=k_{Q}-\delta_{Q P} \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence, only one term in $a_{P}|\mathbf{k}\rangle$ survives:

$$
\begin{equation*}
a_{P}|\mathbf{k}\rangle=\delta_{k_{P} 1} \Gamma_{P}^{\mathbf{k}}\left|k_{1}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle \tag{4.12}
\end{equation*}
$$

The operator a_{P} is called the annihilation operator.
Combining Eqs. (4.8) and (4.12), we get

$$
\begin{align*}
a_{P}^{\dagger} a_{P}|\mathbf{k}\rangle & =\delta_{k_{P} 1}|\mathbf{k}\rangle \tag{4.13}\\
a_{P} a_{P}^{\dagger}|\mathbf{k}\rangle & =\delta_{k_{P} 0}|\mathbf{k}\rangle \tag{4.14}
\end{align*}
$$

that leads to

$$
\begin{equation*}
a_{P}^{\dagger} a_{P}+a_{P} a_{P}^{\dagger}=1 \tag{4.15}
\end{equation*}
$$

For $P>Q$, we have

$$
\begin{aligned}
a_{P}^{\dagger} a_{Q}|\mathbf{k}\rangle & =-\delta_{k_{P} 0} \delta_{k_{Q} 1} \Gamma_{P}^{\mathbf{k}} \Gamma_{Q}^{\mathbf{k}}\left|k_{1}, \ldots, 0_{Q}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle \\
a_{Q} a_{P}^{\dagger}|\mathbf{k}\rangle & =\delta_{k_{P} 0} \delta_{k_{Q} 1} \Gamma_{P}^{\mathbf{k}} \Gamma_{Q}^{\mathbf{k}}\left|k_{1}, \ldots, 0_{Q}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle,
\end{aligned}
$$

thus we have the operator identity

$$
\begin{equation*}
a_{P}^{\dagger} a_{Q}+a_{Q} a_{P}^{\dagger}=0 \quad P>Q \tag{4.16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
a_{P}^{\dagger} a_{Q}+a_{Q} a_{P}^{\dagger}=\left[a_{P}^{\dagger}, a_{Q}\right]_{+}=\delta_{P Q} . \tag{4.17}
\end{equation*}
$$

4.1.2 Number-conserving operators

The occupation-number operator that counts the number of electrons in spin-orbital P is introduced as

$$
\begin{equation*}
\hat{N}_{P}=a_{P}^{\dagger} a_{P}, \quad \hat{N}_{P}|\mathbf{k}\rangle=k_{P}|\mathbf{k}\rangle \tag{4.18}
\end{equation*}
$$

The occupation-number operators are Hermitian, $\hat{N}^{\dagger}=\hat{N}$, as well as idempotent, $\hat{N}_{P}^{2}=$ \hat{N}_{P}. Using the basic anticommutation relations, we obtain

$$
\begin{align*}
{\left[\hat{N}_{P}, a_{Q}^{\dagger}\right] } & =\delta_{P Q} a_{Q}^{\dagger} \tag{4.19}\\
{\left[\hat{N}_{P}, a_{Q}\right] } & =-\delta_{P Q} a_{Q} \tag{4.20}
\end{align*}
$$

So for an arbitrary string \hat{X} consisting of creation and annihilation operators, e.g. $\hat{X}=$ $a_{P}^{\dagger} a_{Q} a_{P} a_{R}^{\dagger} a_{S}$, the commutators with \hat{N} become

$$
\begin{equation*}
\left[\hat{N}_{P}, \hat{X}\right]=N_{P}^{X} \hat{X} \tag{4.21}
\end{equation*}
$$

where N_{P}^{X} is the number of times a_{P}^{\dagger} occurs in \hat{X} minus the number of times a_{P} occurs.
All occupation-number operators added together in the Fock space gives the Hermitian operator

$$
\begin{equation*}
\hat{N}=\sum_{P=1}^{M} a_{P}^{\dagger} a_{P} \tag{4.22}
\end{equation*}
$$

which returns the number of electrons in an $O N$ vector, $\hat{N}|\mathbf{k}\rangle=N|\mathbf{k}\rangle$, and is therefore known as the particle-number operator. We find that the number operator commutes with any string \hat{T} that contains an equal number of creation and annihilation operators. Such strings are called number-conserving. In general, the application of the string \hat{X} to a Fock-space vector increases the number of electrons by N^{X}.

The simplest number-conserving operators are the elementary excitation operators

$$
\begin{equation*}
\hat{E}_{Q}^{P}=a_{P}^{\dagger} a_{Q} \tag{4.23}
\end{equation*}
$$

which give as applied to an ON vector

$$
\begin{align*}
a_{P}^{\dagger} a_{Q}|\mathbf{k}\rangle & =a_{P}^{\dagger} \delta_{k_{Q} 1} \Gamma_{Q}^{\mathbf{k}}\left|k_{1}, \ldots, 0_{Q}, \ldots, k_{P}, \ldots, k_{M}\right\rangle \\
& =\delta_{k_{P} 0} \delta_{k_{Q} 1} \Gamma_{Q}^{\mathbf{k}} \Gamma_{P}^{\mathbf{k}} \varepsilon_{P Q}\left|k_{1}, \ldots, 0_{Q}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle \\
& =\varepsilon_{P Q} \Gamma_{Q}^{\mathbf{k}} \Gamma_{P}^{\mathbf{k}}\left(1-k_{P}\right) k_{Q}\left|\begin{array}{l}
k_{P} \rightarrow 1 \\
k_{Q} \rightarrow 0
\end{array}\right\rangle \tag{4.24}
\end{align*}
$$

where

$$
\varepsilon_{P Q}=\left\{\begin{array}{cc}
1 & P \leq Q \\
-1 & P>Q
\end{array} .\right.
$$

The case $P<Q$ differs from this result only in the interpretation of $\varepsilon_{P Q}$, whereas the case $P=Q$ is covered by Eq. (4.18). Therefore we may write

$$
a_{P}^{\dagger} a_{Q}|\mathbf{k}\rangle=\varepsilon_{P Q} \Gamma_{P}^{\mathbf{k}} \Gamma_{Q}^{\mathbf{k}}\left(1-k_{P}+\delta_{P Q}\right) k_{Q}\left|\begin{array}{c}
k_{P} \rightarrow 1 \tag{4.25}\\
k_{Q} \rightarrow \delta_{P Q}
\end{array}\right\rangle .
$$

First quantization	Second quantization
- One-electron operator: $\hat{f}^{c}=\sum_{i=1}^{N} f\left(\mathbf{x}_{i}\right)$	- One-electron operator: $\hat{f}=\sum_{P Q} f_{P Q} a_{P}^{\dagger} a_{Q}$
- Two-electron operator: $\hat{g}^{c}=\sum_{i=1}^{N} \sum_{j=i+1}^{N} g\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$	- Two-electron operator: $\hat{g}=\frac{1}{2} \sum_{P Q R S} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}$
- Operators are independent of the spinorbital basis - Operators depend on the number of electrons - Operators are exact	- Operators depend on the spin-orbital basis - Operators are independent of electrons - Projected operators

Table 4.1: Comparison between first and second quantization representations.

The application of a single such operator gives a single excitation, two a double excitation and so forth.

4.2 The representation of one- and two-electron operators

Expectation values of Hermitian operators correspond to physical observables and should thus be independent of the representation of operators and states. Therefore, we require the matrix element of a second-quantization operator between two ON vectors to be equal to its first-quantization counterpart.

To determine the numerical parameters $f_{P Q}$ in the second-quantization representation of one-electron operators, we evaluate the matrix elements of \hat{f} between two ON vectors and compare with the usual Slater rules for matrix elements between determinants. We are lead to the identification

$$
\begin{align*}
f_{P Q} & =\left\langle\psi_{P}\right| \hat{f}^{c}\left|\psi_{Q}\right\rangle \tag{4.26}\\
g_{P Q R S} & =\left\langle\psi_{P} \psi_{R}\right| \hat{g}^{c}\left|\psi_{Q} \psi_{S}\right\rangle . \tag{4.27}
\end{align*}
$$

The parameters $g_{P Q R S}$ possess the particle-interchange symmetry,

$$
\begin{equation*}
g_{P Q R S}=g_{R S P Q} . \tag{4.28}
\end{equation*}
$$

In the case of real spin-orbitals, the integrals exhibit the following permutational symmetries:

$$
\begin{align*}
f_{P Q} & =f_{Q P} \tag{4.29}\\
g_{P Q R S} & =g_{Q P R S}=g_{P Q S R}=g_{Q P S R} \tag{4.30}
\end{align*}
$$

of which the latter may be further combined with Eq. (4.28) to yield an eight-fold symmetry.
Using the introduced second-quantization representation, we may now construct the (non-relativistic, spin-free) molecular electronic Hamiltonian in the Born-Oppenheimer approximation,

$$
\begin{equation*}
\hat{H}=\sum_{P Q} h_{P Q} a_{P}^{\dagger} a_{Q}+\frac{1}{2} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}+h_{\mathrm{nuc}}, \tag{4.31}
\end{equation*}
$$

where

$$
\begin{align*}
h_{P Q} & =\int \psi_{P}^{*}(\mathbf{x})\left(-\frac{1}{2} \nabla^{2}-\sum_{I} \frac{Z_{I}}{r_{i I}}\right) \psi_{Q}(\mathbf{x}) d \mathbf{x} \tag{4.32}\\
g_{P Q R S} & =\int \frac{\psi_{P}^{*}(\mathbf{x}) \psi_{R}^{*}(\mathbf{x}) \psi_{Q}(\mathbf{x}) \psi_{S}(\mathbf{x})}{r_{12}} d \mathbf{x}_{1} d \mathbf{x}_{2} \tag{4.33}\\
h_{\mathrm{nuc}} & =\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{R_{I J}} . \tag{4.34}
\end{align*}
$$

The form of the second-quantization Hamiltonian can be interpreted in the following way: Applied to an electronic state, the Hamiltonian produces a linear combination of the original state with states generated by single and double electron excitations from this state. With each such excitation, there is an associated amplitude $h_{P Q}$ or $g_{P Q R S}$, which represents the probability of this event happening.

Let \hat{A}^{c}, \hat{B}^{c} and \hat{C}^{c} be one-electron operators in first quantization and \hat{A}, \hat{B} and \hat{C} be the corresponding second-quantization representations.

- The first-quantization operator $a \hat{A}^{c}+b \hat{B}^{c}$, where a and b are numbers, is represented by $a \hat{A}+b \hat{B}$.
- The standard relations

$$
\begin{align*}
\hat{A}(\hat{B} \hat{C}) & =(\hat{A} \hat{B}) \hat{C} \tag{4.35}\\
(\hat{A} \hat{B})^{\dagger} & =\hat{B}^{\dagger} \hat{A}^{\dagger} \tag{4.36}
\end{align*}
$$

are valid.

- For a complete one-electron basis

$$
\hat{C}^{c}=\hat{A}^{c} \hat{B}^{c} \Rightarrow \hat{C}=\hat{A} \hat{B}
$$

but for finite basis sets this expression does not hold. The second-quantization operators are projections of the exact operators onto a basis of spin-orbitals. For an incomplete basis, the second-quantization representation of an operator product depends on when the projection is made.

Second quantization treats operators and wave functions in a unified way - they are all expressed in terms of the elementary creation and annihilation operators: any ON vector may be written as

$$
\begin{equation*}
|\mathbf{k}\rangle=\hat{X}_{\mathbf{k}}|\mathrm{vac}\rangle=\left[\prod_{P=1}^{M}\left(a_{P}^{\dagger}\right)^{k_{P}}\right]|\mathrm{vac}\rangle \tag{4.37}
\end{equation*}
$$

and therefore the matrix elements can be viewed as the vacuum expectation value of an operator

$$
\begin{equation*}
\langle\mathbf{k}| \hat{O}|\mathbf{m}\rangle=\langle\operatorname{vac}| \hat{X}_{\mathbf{k}}^{\dagger} \hat{O} \hat{X}_{\mathbf{m}}|\operatorname{vac}\rangle, \tag{4.38}
\end{equation*}
$$

and expectation values become linear combinations of vacuum expectation values.

4.3 Commutators and anticommutators

In the manipulation of operators and matrix elements in second quantization, the commutator $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$ and the anticommutator $[\hat{A}, \hat{B}]_{+}=\hat{A} \hat{B}+\hat{B} \hat{A}$ of two operators are often encountered. Referring to the basic relations of the elementary creation and annihilation operators, it is usually possible to simplify the commutators and anticommutators between strings of elementary operators considerably.

We need to introduce the concepts of operator rank and rank reduction.

- The (particle) rank of a string of creation and annihilation operators is simply the number of elementary operators divided by 2.
- Rank reduction is said to occur when the rank of a commutator or anticommutator is lower than the combined rank of the operators commuted or anticommuted.

A simple rule

- Rank reduction follows upon anticommutation of two strings of half-integral rank and upon commutation of all other strings
is useful for simplifying the expressions.
One useful strategy for the evaluation of commutators and anticommutators is based on their linear expansion in simpler commutators or anticommutators according to e.g. the following operator identities (see Exercise 3), and aim at greatest possible rank reduction:

$$
\begin{align*}
{\left[\hat{A}, \hat{B}_{1} \hat{B}_{2}\right] } & =\left[\hat{A}, \hat{B}_{1}\right] \hat{B}_{2}+\hat{B}_{1}\left[\hat{A}, \hat{B}_{2}\right] \tag{4.39}\\
{\left[\hat{A}, \hat{B}_{1} \cdots \hat{B}_{n}\right] } & =\sum_{k=1}^{n} \hat{B}_{1} \cdots \hat{B}_{k-1}\left[\hat{A}, \hat{B}_{k}\right] \hat{B}_{k+1} \cdots \hat{B}_{n} \tag{4.40}\\
{\left[\hat{A}, \hat{B}_{1} \hat{B}_{2}\right] } & =\left[\hat{A}, \hat{B}_{1}\right]_{+} \hat{B}_{2}-\hat{B}_{1}\left[\hat{A}, \hat{B}_{2}\right]_{+} \tag{4.41}
\end{align*}
$$

$$
\begin{align*}
{\left[\hat{A}, \hat{B}_{1} \cdots \hat{B}_{n}\right] } & =\sum_{k=1}^{n}(-1)^{k-1} \hat{B}_{1} \cdots\left[\hat{A}, \hat{B}_{k}\right]_{+} \cdots \hat{B}_{n}(n \text { even }) \tag{4.42}\\
{\left[\hat{A}, \hat{B}_{1} \hat{B}_{2}\right]_{+} } & =\left[\hat{A}, \hat{B}_{1}\right] \hat{B}_{2}+\hat{B}_{1}\left[\hat{A}, \hat{B}_{2}\right]_{+}=\left[\hat{A}, \hat{B}_{1}\right]_{+} \hat{B}_{2}-\hat{B}_{1}\left[\hat{A}, \hat{B}_{2}\right] \tag{4.43}\\
{\left[\hat{A}, \hat{B}_{1} \cdots \hat{B}_{n}\right]_{+} } & \left.=\sum_{k=1}^{n}(-1)^{k-1} \hat{B}_{1} \cdots\left[\hat{A}, \hat{B}_{k}\right]_{+} \cdots \hat{B}_{n} \text { (} n \text { odd }\right) . \tag{4.44}
\end{align*}
$$

4.3.1 Evaluation of commutators and anti-commutators

Let us consider the simplest nontrivial commutator, $\left[a_{P}^{\dagger}, a_{Q}^{\dagger} a_{R}\right]$. Moving one of the operators after the comma out of the commutators by using (4.41),

$$
\begin{equation*}
\left[a_{P}^{\dagger}, a_{Q}^{\dagger} a_{R}\right]=\left[a_{P}^{\dagger}, a_{Q}^{\dagger}\right]_{+} a_{R}-a_{Q}^{\dagger}\left[a_{P}^{\dagger}, a_{R}\right]_{+} \tag{4.45}
\end{equation*}
$$

and invoking the basic anticommutation relation we have

$$
\begin{equation*}
\left[a_{P}^{\dagger}, a_{Q}^{\dagger} a_{R}\right]=-\delta_{P R} a_{Q}^{\dagger} . \tag{4.46}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left[a_{P}, a_{Q}^{\dagger} a_{R}\right]=\delta_{P Q} a_{R} . \tag{4.47}
\end{equation*}
$$

Then, let us evaluate the commutator between two excitation operators, using the results from the previous example,

$$
\begin{equation*}
\left[a_{P}^{\dagger} a_{Q}, a_{R}^{\dagger} a_{S}\right]=\left[a_{P}^{\dagger}, a_{R}^{\dagger} a_{S}^{\dagger}\right] a_{R}+a_{P}^{\dagger}\left[a_{Q}, a_{R}^{\dagger} a_{S}\right]=\delta_{Q R} a_{P}^{\dagger} a_{S}-\delta_{P S} a_{R}^{\dagger} a_{Q} . \tag{4.48}
\end{equation*}
$$

A slightly more complicated commutator is evaluated by applying Eq. (4.39) and the previous result:

$$
\begin{align*}
{\left[a_{P}^{\dagger} a_{Q}, a_{R}^{\dagger} a_{S} a_{M}^{\dagger} a_{N}\right]=} & {\left[a_{P}^{\dagger} a_{Q}, a_{R}^{\dagger} a_{S}\right] a_{M}^{\dagger} a_{N}+a_{R}^{\dagger} a_{S}\left[a_{P}^{\dagger} a_{Q}, a_{M}^{\dagger} a_{N}\right] } \\
= & \delta_{Q R} a_{P}^{\dagger} a_{S} a_{M}^{\dagger} a_{N}-\delta_{P S} a_{R}^{\dagger} a_{Q} a_{M}^{\dagger} a_{N} \\
& +\delta_{Q M} a_{R}^{\dagger} a_{S} a_{P}^{\dagger} a_{N}-\delta_{P N} a_{R}^{\dagger} a_{S} a_{M}^{\dagger} a_{Q} . \tag{4.49}
\end{align*}
$$

The following double commutator can be evaluated by invoking the result (4.48) twice

$$
\begin{align*}
{\left[a_{P}^{\dagger} a_{Q},\left[a_{R}^{\dagger} a_{S}, a_{M}^{\dagger} a_{N}\right]\right]=} & \delta_{S M}\left[a_{P}^{\dagger} a_{Q}, a_{R}^{\dagger} a_{N}^{\dagger}\right]-\delta_{R N}\left[a_{P}^{\dagger} a_{Q}, a_{M}^{\dagger} a_{S}\right] \\
= & \delta_{S M} \delta_{Q R} a_{P}^{\dagger} a_{N}-\delta_{S M} \delta_{P M} a_{R}^{\dagger} a_{Q}-\delta_{R N} \delta_{Q M} a_{P}^{\dagger} a_{S} \\
& +\delta_{R N} \delta_{P S} a_{M}^{\dagger} a_{Q} . \tag{4.50}
\end{align*}
$$

This gives rise to a rank reduction by 2 .

4.4 Orbital rotations

In many situations, e.g., during the optimization of an approximate electronic state or in the calculation of the response of an electronic state to an external perturbation, it becomes necessary to carry out transformations between different sets of orthonormal spin-orbitals.

We shall encounter especially cases where the occupation numbers refer to a set of orthonormal spin-orbitals $\tilde{\psi}_{P}$ that is obtained from another set ψ_{P} by a unitary transformation

$$
\begin{equation*}
\tilde{\psi}_{P}=\sum_{Q} \psi_{Q} U_{Q P} \tag{4.51}
\end{equation*}
$$

Here, a unitary matrix \mathbf{U} is a matrix that fulfills the relation

$$
\begin{equation*}
\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{U U}^{\dagger}=1 \tag{4.52}
\end{equation*}
$$

The spectral theorem states that any unitary matrix can be diagonalized as

$$
\mathbf{U}=\mathbf{V} \epsilon \mathbf{V}^{\dagger}
$$

where \mathbf{V} is unitary and $\boldsymbol{\epsilon}$ a complex diagonal matrix, $\epsilon_{k k}=\exp \left(i \delta_{k}\right)$. Therefore any unitary matrix can be written as the matrix exponential ${ }^{1}$ of an anti-Hermitian matrix:

$$
\begin{align*}
\mathbf{U} & =\mathbf{V} \exp (i \boldsymbol{\delta}) \mathbf{V}^{\dagger}=\exp \left(i \mathbf{V} \boldsymbol{\delta} \mathbf{V}^{\dagger}\right) \\
& \equiv \exp (\mathbf{X}), \quad \mathbf{X}=-\mathbf{X}^{\dagger} \tag{4.53}
\end{align*}
$$

By an introduction of the anti-Hermitian operator

$$
\begin{equation*}
\hat{\kappa}=\sum_{P Q} \kappa_{P Q} a_{P}^{\dagger} a_{Q}, \quad \hat{\kappa}^{\dagger}=-\hat{\kappa}, \tag{4.54}
\end{equation*}
$$

where the parameters $\kappa_{P Q}$ are the elements of an anti-Hermitian matrix $\boldsymbol{\kappa}$, for which $\mathbf{U}=\exp (-\boldsymbol{\kappa})$, the elementary operators $\tilde{a}_{P}^{\dagger}, \tilde{a}_{P}$ and state $|\tilde{0}\rangle$ generated by the unitary transformation (4.51) can be expressed in terms of the untransformed operators and states as

$$
\begin{align*}
\tilde{a}_{P}^{\dagger} & =\exp (-\hat{\kappa}) a_{P}^{\dagger} \exp (\hat{\kappa}) \tag{4.55}\\
\tilde{a}_{P} & =\exp (-\hat{\kappa}) a_{P} \exp (\hat{\kappa}) \tag{4.56}\\
|\tilde{0}\rangle & =\exp (-\hat{\kappa})|0\rangle . \tag{4.57}
\end{align*}
$$

4.5 Spin in second quantization

In the formalism of second quantization, there is no reference to electron spin. However, in non-relativistic theory, many important simplifications follow by taking spin explicitly

[^3]into account. Therefore, we shall separate the orbital space and the spin space, ${ }^{2}$ i.e. a spin orbital will be denoted by $\psi_{P}(\mathbf{x})=\phi_{p}(\mathbf{r}) \sigma\left(m_{s}\right)=\phi_{p \sigma}$. The theory of second quantization holds unchanged; for example the basic anticommutator now becomes
\[

$$
\begin{equation*}
\left[a_{p \sigma}^{\dagger}, a_{q \tau}\right]_{+}=\delta_{p \sigma, q \tau}=\delta_{p q} \delta_{\sigma \tau} \tag{4.58}
\end{equation*}
$$

\]

where, for example, $a_{p \sigma}^{\dagger}$ is the creation operator associated with the spin-orbital $\phi_{p \sigma}$.

4.5.1 Operators in the orbital basis

We may classify the quantum-mechanical operators according to how they affect the orbital and spin parts of wave functions: Spin-free operators, spin operators and mixed operators.

One-electron are written in the spin-orbital basis as

$$
\hat{f}=\sum_{p \sigma} \sum_{q \tau} f_{p \sigma, q \tau} a_{p \sigma}^{\dagger} a_{q \tau} .
$$

The integrals vanish for opposite spins in the case of spin-free (or spinless) operators:

$$
\begin{aligned}
f_{p \sigma, q \tau} & =\int \phi_{p}^{\star}(\mathbf{r}) \sigma^{\star}\left(m_{s}\right) f^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) \tau\left(m_{s}\right) d \mathbf{r} d m_{s} \\
& =\delta_{\sigma \tau} \int \phi_{p}^{\star}(\mathbf{r}) f^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) d \mathbf{r}=f_{p q} \delta_{\sigma \tau}=\sum_{p q} f_{p q} \hat{E}_{p q},
\end{aligned}
$$

where we have introduced the singlet excitation operator

$$
\begin{equation*}
\hat{E}_{p q}=a_{p \alpha}^{\dagger} a_{q \alpha}+a_{p \beta}^{\dagger} a_{q \beta} . \tag{4.59}
\end{equation*}
$$

The two-electron operators are given by

$$
\hat{g}=\frac{1}{2} \sum_{p \sigma q \tau r \mu s \nu} g_{p \sigma, q \tau, r \mu, s \nu} a_{p \sigma}^{\dagger} a_{r \mu}^{\dagger} a_{s \nu} a_{q \tau} .
$$

Here, the orthogonality of the spin functions reduce the integrals to

$$
\begin{equation*}
g_{p \sigma, q \tau, r \mu, s \nu}=g_{p q r s} \delta_{\sigma \tau} \delta_{\mu \nu}, \tag{4.60}
\end{equation*}
$$

where $g_{p q r s}$ are the two-electron integrals in ordinary space, that are always symmetric with respect to the particle-interchange, $g_{\text {pqrs }}=g_{r s p q}$, and have the Hermitian symmetry $g_{\text {pqrs }}=g_{\text {qpsr }}^{\star}$ in the case of complex orbitals; and in the case of real orbitals, we have a permutational symmetry

$$
g_{p q r s}=g_{q p r s}=g_{p q s r}=g_{q p s r} .
$$

[^4]The second-quantization representation of a spin-free two-electron operator is then

$$
\begin{equation*}
\hat{g}=\frac{1}{2} \sum_{p q r s} g_{p q r s} \sum_{\sigma \tau} a_{p \sigma}^{\dagger} a_{r \tau}^{\dagger} a_{s \tau} a_{q \sigma}=\frac{1}{2} \sum_{p q r s} g_{p q r s}\left(\hat{E}_{p q} \hat{E}_{r s}-\delta_{q r} E_{p s}\right)=\frac{1}{2} \sum_{p q r s} g_{p q r s} \hat{e}_{p q r s} . \tag{4.61}
\end{equation*}
$$

We have introduced the two-electron singlet excitation operator in the last equality. We can now express the spin-free, non-relativistic molecular electronic Hamiltonian in the orbital basis:

$$
\begin{equation*}
\hat{H}=\sum_{p q} h_{p q} \hat{E}_{p q}+\frac{1}{2} \sum_{p q r s} g_{p q r s} \hat{e}_{p q r s} . \tag{4.62}
\end{equation*}
$$

The one- and two-electron integrals are the same as in (4.31), except that the integrations are over the spatial coordinates only.

The one-electron second-quantization operators associated to operators that work in spin space only may be written in the general form

$$
\begin{align*}
\hat{f} & =\sum_{p \sigma q \tau} \int \phi_{p}^{\star}(\mathbf{r}) \sigma^{\star}\left(m_{s}\right) f^{c}\left(m_{s}\right) \phi_{q}(\mathbf{r}) \tau\left(m_{s}\right) d \mathbf{r} d m_{s} a_{p \sigma}^{\dagger} a_{q \tau} \\
& =\sum_{\sigma \tau} \int \sigma^{\star}\left(m_{s}\right) f^{c}\left(m_{s}\right) \tau\left(m_{s}\right) d m_{s} \sum_{p} a_{p \sigma}^{\dagger} a_{p \tau} \tag{4.63}
\end{align*}
$$

Three important examples of pure spin operators are the raising and lowering operators \hat{S}_{+}^{c} and \hat{S}_{-}^{c}, and \hat{S}_{z}^{c}. The effect of these operators on the (one-particle state) spin functions is

$$
\begin{aligned}
S_{+}^{c} \beta=\alpha & \hat{S}_{+}^{c} \alpha=0 \\
S_{-}^{c} \beta=0 & \hat{S}_{-}^{c} \alpha=\beta \\
S_{z}^{c} \beta=-\frac{1}{2} \beta & \hat{S}_{z}^{c} \alpha=+\frac{1}{2} \alpha .
\end{aligned}
$$

From these we arrive at the following expressions for the basic spin operators:

$$
\begin{align*}
\hat{S}_{+} & =\sum_{p} a_{p \alpha}^{\dagger} a_{p \beta} \tag{4.64}\\
\hat{S}_{-} & =\sum_{p} a_{p \beta}^{\dagger} a_{p \alpha} \tag{4.65}\\
\hat{S}_{z} & =\frac{1}{2} \sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \alpha}-a_{p \beta}^{\dagger} a_{p \beta}\right) . \tag{4.66}
\end{align*}
$$

The lowering operator is seen to be the Hermitian adjoint of the raising operator:

$$
\hat{S}_{+}^{\dagger}=\sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \beta}\right)^{\dagger}=\sum_{p} a_{p \beta}^{\dagger} a_{p \alpha}=\hat{S}_{-}
$$

The operators for the x and y components of the spin angular momentum can be written in terms of the raising and lowering operators as

$$
\begin{aligned}
S_{x}^{c} & =\frac{1}{2}\left(S_{+}^{c}+S_{-}^{c}\right) \\
S_{y}^{c} & =\frac{1}{2 i}\left(S_{+}^{c}-S_{-}^{c}\right)
\end{aligned}
$$

from which we obtain the second-quantization counterparts,

$$
\begin{align*}
& \hat{S}_{x}=\frac{1}{2} \sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \beta}+a_{p \beta}^{\dagger} a_{p \alpha}\right) \tag{4.67}\\
& \hat{S}_{y}=\frac{1}{2 i} \sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \beta}-a_{p \beta}^{\dagger} a_{p \alpha}\right) \tag{4.68}
\end{align*}
$$

which may be combined with (4.66) to give the operator for the total spin, $\hat{S}^{2}=\hat{S}_{x}^{2}+\hat{S}_{y}^{2}+\hat{S}_{z}^{2}$. As it contains products of one-electron operators, it is a two-electron operator and therefore somewhat tedious to manipulate. However, the explicit form is seldom needed, because we are able to employ the standard operator identities: In contrast to the orbital basis, the spin basis is complete, hence the usual first-quantization commutation relations hold also for the second-quantization spin operators. One such example is

$$
\begin{equation*}
\left[\hat{S}_{+}, \hat{S}_{-}\right]=\left[\sum_{p} a_{p \alpha}^{\dagger} a_{p \beta}, \sum_{q} a_{q \beta}^{\dagger}, a_{q \alpha}\right]=\sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \alpha}-a_{p \beta}^{\dagger} a_{p \beta}\right)=2 \hat{S}_{z} \tag{4.69}
\end{equation*}
$$

For example, the fine-structure and hyperfine-structure operators of first quantization affect both the spatial and spin parts of the wave function. An example would be the spin-orbit interaction operator

$$
V_{\mathrm{SO}}^{c}=\sum_{i=1}^{N} \xi\left(r_{i}\right) \ell_{i}^{c} \cdot \mathbf{S}_{i}^{c}
$$

The second-quantization representation is obtained in the usual manner as

$$
\begin{align*}
\hat{V}_{\mathrm{SO}} & =\sum_{p \sigma q \tau} \int \phi_{p}^{\star}(\mathbf{r}) \sigma^{\star}\left(m_{s}\right) V_{\mathrm{SO}}^{c}\left(\mathbf{r}, m_{s}\right) \phi_{q}(\mathbf{r}) \tau\left(m_{s}\right) d \mathbf{r} d m_{s} a_{p \sigma}^{\dagger} a_{q \tau} \\
& =\sum_{p q}\left(V_{p q}^{x} \hat{T}_{p q}^{x}+V_{p q}^{y} \hat{T}_{p q}^{y}+V_{p q}^{z} \hat{T}_{p q}^{z}\right) \tag{4.70}
\end{align*}
$$

where

$$
V_{p q}^{\mu}=\int \phi_{p}^{\star}(\mathbf{r}) \xi(r) \ell_{\mu}^{c} \phi_{q}(\mathbf{r}) d \mathbf{r}
$$

and where the Cartesian components of the triplet excitation operators are given by

$$
\begin{align*}
& \hat{T}_{p q}^{x}=\frac{1}{2}\left(a_{p \alpha}^{\dagger} a_{q \beta}+a_{p \beta}^{\dagger} a_{q \alpha}\right) \tag{4.71}\\
& \hat{T}_{p q}^{y}=\frac{1}{2 i}\left(a_{p \alpha}^{\dagger} a_{q \beta}-a_{p \beta}^{\dagger} a_{q \alpha}\right) \tag{4.72}\\
& \hat{T}_{p q}^{z}=\frac{1}{2}\left(a_{p \alpha}^{\dagger} a_{q \alpha}-a_{p \beta}^{\dagger} a_{q \beta}\right) . \tag{4.73}
\end{align*}
$$

The second-quantization representation of

- spin-free operators depend on the orbitals but have the same amplitudes (=integrals) for alpha and beta spins
- pure spin operators are independent of the functional form of the orbitals
- mixed operators depend on both the spin of the electron and the functional form of the orbitals.

4.5.2 Spin properties of determinants

Slater determinants are in general not eigenfunctions of the non-relativistic Hamiltonian, but are instead the non-degenerate eigenfunctions of the spin-orbital occupation-number operators:

$$
\begin{equation*}
\hat{N}_{p \sigma}|\mathbf{k}\rangle=k_{p \sigma}|\mathbf{k}\rangle . \tag{4.74}
\end{equation*}
$$

We also note that the spin-orbital ON operators commute with the spin-projection operator, i.e. $\left[\hat{S}_{z}, \hat{N}_{p \sigma}\right]=0$, because the ON operators commute among themselves, and \hat{S}_{z} is a linear combination of spin-orbital ON operators. Added by the observation that there is no degeneracies in (4.74), the Slater determinants are eigenfunctions of the projected spin:

$$
\begin{equation*}
\hat{S}_{z}|\mathbf{k}\rangle=M|\mathbf{k}\rangle . \tag{4.75}
\end{equation*}
$$

By contrast, the Slater determinants are not eigenfunctions of the total spin. However, it is possible to determine spin eigenfunctions as simple linear combinations of determinants. A hint for the procedure is given by an observation that both the total and projected-spin operators commute with the sum of the ON operators for alpha and beta spins:

$$
\begin{aligned}
& {\left[\hat{S}_{z}, \hat{N}_{p \sigma}+\hat{N}_{p \beta}\right]=0} \\
& {\left[\hat{S}^{2}, \hat{N}_{p \sigma}+\hat{N}_{p \beta}\right]=0,}
\end{aligned}
$$

because $\hat{N}_{p \sigma}+\hat{N}_{p \beta}$ are singlet operators. Such spin-adapted functions are known as configuration state functions.

4.6 Further reading

- T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley 2002), pp. 1-106.
- W. Kutzelnigg, Quantum chemistry in Fock space, in D. Mukherjee (ed), Aspects of Many-Body Effects in Molecules and Extended Systems, Lecture Notes in Chemistry Vol. 50 (Springer-Verlag 1989).
- P. R. Surján, Second Quantized Approach to Quantum Chemistry (Springer-Verlag 1989).

4.7 Exercises for Chapter 4

1. Verify the commutation and anticommutation relations (142-147) in the lectures.
2. Let $\hat{\kappa}$ and \hat{f} be one-electron operators. Show that the commutator $[\hat{\kappa}, \hat{f}]$ can be written as a one-electron operator

$$
[\hat{\kappa}, \hat{f}]=\sum_{P Q} f_{P Q}^{\kappa} a_{P}^{\dagger} a_{Q}
$$

with the modified integrals

$$
f_{P Q}^{\kappa}=\sum_{R}\left(\kappa_{P R} f_{R Q}-f_{P R} \kappa_{R Q}\right) .
$$

3. One of the operators that describe the interaction between nuclear magnetic dipoles and electrons is the Fermi contact operator

$$
H_{\mathrm{FC}}^{c}=\sum_{K} \sum_{i} \gamma_{K} \delta\left(\mathbf{r}_{i}-\mathbf{R}_{K}\right) \mathbf{s}_{i}^{c} \cdot \mathbf{I}_{K}
$$

where \mathbf{s}_{i}^{c} is the spin of electron i, \mathbf{I}_{K} and γ_{K} the nuclear spin and the magnetogyric ratio of nucleus K, respectively, and δ the Dirac delta function. Determine the second-quantization representation of the Fermi contact operator.
4. \star Consider two operators appearing in the quasi-relativistic Breit-Pauli Hamiltonian, the two-electron Darwin operator and the spin-spin contact operator:

$$
\begin{aligned}
H_{\mathrm{Dar}(2)}^{c} & =-\frac{\pi}{c^{2}} \sum_{i>j} \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) \\
H_{\mathrm{SSC}}^{c} & =-\frac{8 \pi}{3 c^{2}} \sum_{i>j} \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) \mathbf{s}_{i} \cdot \mathbf{s}_{j} .
\end{aligned}
$$

(a) Show that the second-quantization representation of the two-electron Darwin operator becomes

$$
\hat{H}_{\operatorname{Dar}(2)}=\sum_{p q r s} S_{p q r s} a_{p \alpha}^{\dagger} a_{r \beta}^{\dagger} a_{s \beta} a_{q \alpha},
$$

where

$$
S_{p q r s}=-\frac{\pi}{c^{2}} \int \phi_{p}^{\star}(\mathbf{r}) \phi_{q}(\mathbf{r}) \phi_{r}^{\star}(\mathbf{r}) \phi_{s}(\mathbf{r}) d \mathbf{r} .
$$

(b) Show that in second quantization these operators are related as

$$
\hat{H}_{\mathrm{SSC}}=-2 \hat{H}_{\mathrm{Dar}(2)} .
$$

5. \star Consider a set of spin-orbitals $\tilde{\phi}_{P}$ obtained from another set ϕ_{P} by a unitary trasformation

$$
\tilde{\phi}_{P}=\sum_{Q} \phi_{Q} U_{Q P}, \quad \mathbf{U} \text { unitary }
$$

When \mathbf{U} is written in terms of an anti-Hermitian matrix $\boldsymbol{\kappa}$ as

$$
\mathbf{U}=\exp (-\boldsymbol{\kappa}), \quad \boldsymbol{\kappa}^{\dagger}=-\boldsymbol{\kappa}
$$

show, that the elementary operators $\tilde{a}_{P}^{\dagger}, \tilde{a}_{P}$ as well as state $|\tilde{0}\rangle$ generated by the unitary transformation may be expressed in terms of the untransformed operators and states as

$$
\begin{aligned}
\tilde{a}_{P}^{\dagger} & =\exp (-\hat{\kappa}) a_{P}^{\dagger} \exp (\hat{\kappa}) \\
\tilde{a}_{P} & =\exp (-\hat{\kappa}) a_{P} \exp (\hat{\kappa}) \\
|\tilde{0}\rangle & =\exp (-\hat{\kappa})|0\rangle .
\end{aligned}
$$

Chapter 5

Hartree-Fock theory

5.1 The Hartree-Fock approximation

In the Hartree-Fock approximation the electronic wave function is approximated by a single Slater determinant, and the energy is optimized with respect to variations of these spinorbitals. Thus, the wave function may be written in a form

$$
\begin{equation*}
|\boldsymbol{\kappa}\rangle=\exp (-\hat{\kappa})|0\rangle, \tag{5.1}
\end{equation*}
$$

where $|0\rangle$ is some reference configuration and $\exp (-\hat{\kappa})$ an operator that carries out unitary transformations among the spin orbitals; these orbital-rotation parameters for the HartreeFock ground state are obtained by minimizing the energy:

$$
\begin{equation*}
E_{\mathrm{HF}}=\min _{\boldsymbol{\kappa}}\langle\boldsymbol{\kappa}| \hat{H}|\boldsymbol{\kappa}\rangle . \tag{5.2}
\end{equation*}
$$

The optimization could be carried out using standard numerical analyisis; however, for the most of purposes more "spesific" methods are required in order to cope with the computational cost. We recall that the Slater determinant represents a situation where electrons behave as independent particles, but are subject to the Fermi correlation. Therefore, the optimal determinant can be found by solving a set of effective one-electron Schrödinger equations - the Hartree-Fock equations - for the spin-orbitals, with the associated Hamiltonian being the Fock operator

$$
\begin{equation*}
\hat{f}=\sum_{P Q} f_{P Q} a_{P}^{\dagger} a_{Q}, \tag{5.3}
\end{equation*}
$$

where the elements $f_{P Q}$ are called the Fock matrix. A very essential feature of the Fock operator is that the one-electron part of the "true" molecular Hamiltonian is retained, but the two-electron part is replaced with the effective Fock operator, so that $\hat{f}=\hat{h}+\hat{V}$. The Fock operator incorporates in an average sense the Coulomb interaction among the electrons, corrected for Fermi correlation:

$$
\begin{equation*}
\hat{V}=\sum_{P Q} V_{P Q} a_{P}^{\dagger} a_{Q} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
V_{P Q}=\sum_{I}\left(g_{P Q I I}-g_{P I I Q}\right), \tag{5.5}
\end{equation*}
$$

where the integrals g are given in Eq. (4.33), with I running over the occupied and P and Q all spin-orbitals. The first term in $V_{P Q}$ describes the classical Coulomb interaction of the electron with the charge distribution caused by the others, and the second one, exchange term, is a correction that arises from the antisymmetry of the wave function.

- The Hartree-Fock equations are solved by diagonalizing the Fock matrix. The resulting eigenvectors are called the canonical spin-orbitals and the the eigenvalues of the Fock matrix are the orbital energies, $f_{P Q}=\delta_{P Q} \epsilon_{P}$.
- Since the Fock matrix is defined in terms of its own eigenvectors, the canonical spinorbitals and the orbital energies can only be obtained using an iterative procedure; where the Fock matrix is constructed and diagonalized in every iteration until the spin-orbitals obtained in a particular iteration become identical to those from which the Fock matrix was constructed. This procedure is referred to as the self-consistent field (SCF) method and the resulting wave function the SCF wave function.
- In the canonical representation, i.e., in the frame where the Fock matrix is diagonal, the electrons occupy the spin-orbitals in accordance with the Pauli principle and move independently one another in the electrostatic field caused by the stationary nuclei and by the charce distribution of the $N-1$ electrons. The orbital energies are the one-electron energies associated with the independent electrons and may thus be interpreted as the energies required to remove a single electron, that is, to ionize the system. The identification of the orbital energies with the negative ionization potentials is known as the Koopman's theorem.

The Hartree-Fock state is invariant to unitary transformations among the occupied spin-orbitals. Therefore, the spin-orbitals of the Hartree-Fock state are not uniquely determied by the condition (5.2) and the canonical orbitals are just one possible choice of spin-orbitals for the optimized N-particle state. Any set of energy-optimized orbitals decomposes the Fock matrix into two non-interacting blocks: one for the occupied, and another for the unoccupied spin-orbitals. When these subblocks are diagonalized, the canonical spin-orbitals are obtained.

The final electronic state is obtained as an antisymmetrized product of the canonical spin orbitals

$$
\begin{equation*}
|\mathrm{HF}\rangle=\left(\prod_{i} a_{i \alpha}^{\dagger} a_{i \beta}^{\dagger}\right)|\mathrm{vac}\rangle . \tag{5.6}
\end{equation*}
$$

Finally, let us make a remark that the Hartree-Fock state is an eigenfunction of the Fock operator with an eigenvalue equal to the sum of the orbital energies of the canonicial spin-orbitals

$$
\begin{equation*}
\hat{f}|\mathrm{HF}\rangle=2 \sum_{i} \epsilon_{i}|\mathrm{HF}\rangle . \tag{5.7}
\end{equation*}
$$

Figure 5.1: The self-consistent field procedure.

5.2 Restricted and unrestricted Hartree-Fock theory

The exact wave function is an eigenfunction of the total and projected spin operators. The Hartree-Fock wave function, which is not an eigenfunction of the Hamiltonian (but of the effective one, the Fock operator), does not possess these symmetries, they must be imposed on the Hartree-Fock solution.

- In the restricted Hartree-Fock (RHF) approximation, the energy is optimized subject to the condition that the wave function is an eigenfunction of the total and projected spins. In a practical implementation of the RHF scheme, it is advantageous to write the wave function as a configuration state function rather than a Slater determinant.
- In the unrestricted Hartree-Fock (UHF) approximation, the wave function is not required to be a spin eigenfunction, and different spatial orbitals are used for different spins.
- In some systems, usually close to the equilibrium geometry, the symmetries of the exact state are present in the UHF state as well. In such cases the UHF and RHF states coincide.

5.2.1 Hartree-Fock treatment of \mathbf{H}_{2}

For the hydrogen molecule, the RHF wave function is a singlet spin eigenfunction with doubly occupied symmetry-adapted $1 \sigma_{g}$ orbitals;

$$
\begin{aligned}
|\mathrm{RHF}\rangle & =a_{1 \sigma_{g} \alpha}^{\dagger} a_{1 \sigma_{g} \beta}^{\dagger}|\mathrm{vac}\rangle \\
|\mathrm{UHF}\rangle & =a_{\phi_{1} \alpha}^{\dagger} a_{\phi_{2} \beta}^{\dagger}|\mathrm{vac}\rangle .
\end{aligned}
$$

Figure 5.2: Perfomance of RHF and UHF models in H_{2}.

Let us plot these wave functions as well as the FCI wave function for comparison using the LCAO approximation for the orbital basis (cc-pVQZ basis set) in Figure 5.2.

At short internuclear distances the RHF and UHF wave functions are identical, providing a crude but reasonable representation of the potential energy surface. At larger separations, the RHF wave function behaves poorly for energy, whereas the UHF wave function falls towards the correct FCI curve. On the other hand, while the RHF wave function remains a true singlet at all distances, the UHF wave function behaves incorrectly with respect to the spin, yielding a spin intermediate of a singlet and a triplet.

5.3 Roothaan-Hall equations

We will now consider the classical Roothaan-Hall formulation of the Hartree-Fock theory, in which the MOs are expanded in a set of AOs, $\phi_{p}=\sum_{\mu} \chi_{\mu} C_{\mu p}$, whose expansion coefficients \mathbf{C} are used as the variational parameters.

The Hartree-Fock energy is the expectation value of the true molecular electronic Hamiltonian (4.62), and is given in the orbital basis by

$$
\begin{equation*}
E^{(0)}=\langle\mathrm{HF}| \hat{H}|\mathrm{HF}\rangle=\sum_{p q} h_{p q} D_{p q}+\frac{1}{2} \sum_{p q r s} g_{p q r s} d_{p q r s} \tag{5.8}
\end{equation*}
$$

where

$$
\begin{align*}
D_{p q} & =\langle\mathrm{HF}| \hat{E}_{p q}|\mathrm{HF}\rangle \tag{5.9}\\
d_{p q r s} & =\langle\mathrm{HF}| \hat{e}_{p q r s}|\mathrm{HF}\rangle . \tag{5.10}
\end{align*}
$$

For a closed-shell state, the only nonzero elements of (5.9) and (5.10) are

$$
\begin{aligned}
D_{i j} & =2 \delta_{i j} \\
d_{i j k l} & =D_{i j} D_{k l}-\frac{1}{2} D_{i l} D_{k j}=4 \delta_{i j} \delta_{k l}-2 \delta_{i l} \delta_{k j}
\end{aligned}
$$

and thus the total Hartree-Fock energy is

$$
\begin{equation*}
E^{(0)}=2 \sum_{i} h_{i i}+\sum_{i j}\left(2 g_{i i j j}-g_{i j j i}\right) . \tag{5.11}
\end{equation*}
$$

The energy must be optimized subject to the orthonormality of the MOs. We introduce the Hartree-Fock Lagrangian

$$
L(\mathbf{C})=E(\mathbf{C})-2 \sum_{i j} \lambda_{i j}\left(\left\langle\phi_{i} \mid \phi_{j}\right\rangle-\delta_{i j}\right)
$$

and the variational conditions are written in terms of it as

$$
0=\frac{\partial L(\mathbf{C})}{\partial C_{\mu k}}=4 h_{\mu k}+4 \sum_{j}\left(2 g_{\mu k j j}-g_{\mu j j k}\right)-4 \sum_{j} S_{\mu j} \lambda_{j k},
$$

which gives the condition for the optimized Hartree-Fock state

$$
\begin{equation*}
f_{\mu k}=\sum_{j} S_{\mu j} \lambda_{j k} \tag{5.12}
\end{equation*}
$$

Since the multiplier matrix $\boldsymbol{\lambda}$ is symmetric (for real orbitals), it can be diagonalized by an orthogonal transformation among the occupied orbitals, $\boldsymbol{\lambda}=\mathbf{U} \boldsymbol{\epsilon} \mathbf{U}^{T}$, the Hartree-Fock energy being invariant to such transformations. The off-diagonal Lagrange multipliers may thus be eliminated by an orthogonal transformation to a set of occupied MOs that satisfy the canonical conditions. In the canonical basis, the variational conditions become

$$
\begin{equation*}
\sum_{\nu} f_{\mu \nu}^{\mathrm{AO}} C_{\nu k}=\epsilon_{k} \sum_{\nu} S_{\mu \nu} C_{\nu k}, \tag{5.13}
\end{equation*}
$$

where the elements of the $A O$ Fock matrix are

$$
\begin{equation*}
f_{\mu \nu}^{\mathrm{AO}}=h_{\mu \nu}+\sum_{i}\left(2 g_{\mu \nu i i}-g_{\mu i i \nu}\right) . \tag{5.14}
\end{equation*}
$$

Since $\mathbf{f}^{A O}$ is symmetric, we can extend the variational conditions to yield a set of orthonormal virtual MOs that satisfy the same canonical conditions as the occupied MOs, i.e., $f_{a b}=\delta_{a b} \epsilon_{a}$. Now, we are able to write the Hartree-Fock variational conditions as

$$
\begin{equation*}
\mathrm{f}^{\mathrm{AO}} \mathbf{C}=\mathrm{SC} \epsilon \tag{5.15}
\end{equation*}
$$

where $\boldsymbol{\epsilon}$ is a diagonal matrix that contains the orbital energies. This equation is called the Roothaan-Hall equations.

The AO Fock matrix can be evaluated entirely in the AO basis,

$$
\begin{equation*}
f_{\mu \nu}^{\mathrm{AO}}=h_{\mu \nu}+\sum_{\rho \sigma} D_{\rho \sigma}^{\mathrm{AO}}\left(g_{\mu \nu \rho \sigma}-\frac{1}{2} g_{\mu \sigma \rho \nu}\right), \tag{5.16}
\end{equation*}
$$

where \mathbf{D}^{AO} is the AO representation of the one-electron density,

$$
\begin{equation*}
\mathbf{D}^{\mathrm{AO}}=\mathbf{C D C}^{T} . \tag{5.17}
\end{equation*}
$$

Figure 5.3: Roothaan-Hall procedure.

5.3.1 On the convergence of the SCF method

A straightforward implementation of the Roothaan-Hall SCF method (given in the figure) may fail to converge or may converge slowly. Several schemes to improve the SCF convergence have been introduced; of which the direct inversion in the iterative subspace (DIIS) method is amongst the simplest and one of the most successful. In the DIIS method, the information from the preceding iterations is used instead of generating the next density from the last AO Fock matrix:

$$
\begin{equation*}
\overline{\mathbf{f}}_{n}^{\mathrm{AO}}=\sum_{i=1}^{n} w_{i} \mathbf{f}_{i}^{\mathrm{AO}} \tag{5.18}
\end{equation*}
$$

where the DIIS weights \mathbf{w} are obtained by minimizing the norm of the averaged error vector $\overline{\mathbf{e}}_{n}=\sum_{i=1}^{n} w_{i} \mathbf{e}_{i}$,

$$
\|\mathbf{e}\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} \underbrace{\left\langle\mathbf{e}_{i} \mid \mathbf{e}_{j}\right\rangle}_{B_{i j}} w_{j},
$$

subject to the constraint that $\sum_{i=1}^{n} w_{i}=1$. For this purpose, we construct the Lagrangian

$$
L=\sum_{i, j=1}^{n} w_{i} B_{i j} w_{j}-2 \lambda\left(\sum_{i=1}^{n} w_{i}-1\right)
$$

Figure 5.4: On the left: $\mathrm{H}_{2} \mathrm{O}$ in its equilibrium geometry, on the right: $\mathrm{H}_{2} \mathrm{O}$ with its bonds stretched to double (angle remaining constant). Calculations are carried out in the cc-pVQZ basis.
the minimization of which leads to the set of linear equations:

$$
\left(\begin{array}{ccccc}
B_{11} & B_{12} & \cdots & B_{1 n} & -1 \\
B_{21} & B_{22} & \cdots & B_{2 n} & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
B_{n 1} & B_{n 2} & \cdots & B_{n n} & -1 \\
-1 & -1 & \cdots & -1 & 0
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n} \\
\lambda
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
-1
\end{array}\right)
$$

from which the weights are solved.

- The C2-DIIS method is similar to the DIIS, but the constraint is $\sum_{i=1}^{n} w_{i}^{2}=1$. This leads to a solution of an eigenvalue problem instead of the set of linear equa tions as in DIIS; the scheme may handle singularities better.
- In the EDIIS ("energy DIIS") scheme, the error-vector-norm minimization is replaced by a minimization of an approximation to the true energy function. It improves the convergence in cases where the start guess has a Hessian structure far from the optimal one. It also can converge in cases where DIIS diverges. For non-problematic cases EDIIS has actually a slower convergence rate than DIIS.
- These are based on either the diagonalization of the Fock matrix or on a direct optimization of the AO density matrix. Nevertheless, in some cases, even the DIIS method (and alike) is difficult to converge, when it might be better to use the secondorder Newton method to the optimization of the Hartree-Fock energy. This has been applied in the literature to the optimization of the AO density matrix (the basis for
the trust-region or restricted-step method) as well as in a method that carries out rotations among the MOs.
- The "trust-region SCF" (TRSCF) is the state-of-the-art model in SCF convergence. It is basically a globally convergent black-box method, where each SCF iteration consists of a trust-region density subspace minimization and a trust-region RoothaanHall step.

5.3.2 Integral-direct SCF

In every Roothaan-Hall SCF iteration a large number of two-electron integrals is needed to construct the Fock matrix. Since the same AO integrals are used in each iteration, these integrals can be written to disk and read in when needed.

In large-scale calculations, this approach becomes impractical due to the large number of needed integrals. In such cases, the AO integrals are instead recomputed in every iteration - as soon as a batch of two-electron integrals has been produced, it is contracted with the appropriate densities. This procedure is known as the direct SCF method.

If the value of an integral is very small, or if it is combined with small density-matrix elements, its contribution to the Fock matrix may be neglected. Therefore, by pre-estimating the integrals by having some kind of upper limit for them, the number of calculated integrals in the direct SCF scheme can be reduced dramatically. The computational cost of the SCF method scales formally as $\mathcal{O}\left(n^{4}\right)$, where n is the number of basis set functions, but it can be shown that only $\mathcal{O}\left(n^{2}\right)$ of the two-electron integrals are significant. Therefore, the direct SCF scheme combined with the pre-screening of the integrals is much cheaper for large systems. Furthermore, by using so-called fast multipole methods, only $\mathcal{O}(n)$ two-electron integrals is needed, while the rest can be either neglected or evaluated classically. The bottleneck is then not anymore in the Fock-matrix construction, but in the diagonalization step (which is an $\mathcal{O}\left(n^{3}\right)$ procedure).

To overcome the diagonalization bottleneck and to achieve a SCF method that would scale linearly with respect of the size of the system, and thus be applicable to large molecular systems such as biomolecules, we would need to optimize directly the AO density matrix.

5.4 Further reading

- T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley 2002), pp. 433-522.
- J. Almlöf, Notes on Hartree-Fock theory and related topics, in B. O. Roos (ed), Lecture Notes in Quantum Chemistry II (Springer-Verlag 1994).
- J. Almlöf, Direct methods in electronic structure theory, in D. R. Yarkony (ed), Modern Electronic Structure Theory (World Scientific 1995), p. 110.

5.5 Exercises for Chapter 5

1. Here we consider the total energies of the singlet and triplet states obtained by promoting one electron from the occupied canonical orbital ϕ_{i} to the virtual canonical orbital ϕ_{a} of a closed-shell Hartree-Fock state. The total energies of the singlet and triplet states can be written as

$$
\begin{gathered}
{ }^{1} E_{a i}=\langle\mathrm{HF}| \hat{S}_{i a}^{0,0} \hat{H} \hat{S}_{a i}^{0,0}|\mathrm{HF}\rangle \\
{ }^{3} E_{a i}=\langle\mathrm{HF}| \hat{T}_{i a}^{1,0} \hat{H} \hat{T}_{a i}^{1,0}|\mathrm{HF}\rangle,
\end{gathered}
$$

where

$$
\begin{aligned}
\hat{S}_{p q}^{0,0} & =\frac{1}{\sqrt{2}}\left(a_{p \alpha}^{\dagger} a_{q \alpha}+a_{p \beta}^{\dagger} a_{q \beta}\right) \\
\hat{T}_{p q}^{1,0} & =\frac{1}{\sqrt{2}}\left(a_{p \alpha}^{\dagger} a_{q \alpha}-a_{p \beta}^{\dagger} a_{q \beta}\right) .
\end{aligned}
$$

(a) Show that the singlet total energy can be expressed as

$$
{ }^{1} E_{a i}=\langle\mathrm{HF}| \hat{H}|\mathrm{HF}\rangle+\frac{1}{2}\langle\mathrm{HF}| E_{i a}\left[\hat{H}, E_{a i}\right]|\mathrm{HF}\rangle .
$$

(b) Show, that the singlet and triplet energies are related as

$$
{ }^{3} E_{a i}={ }^{1} E_{a i}-2\langle\mathrm{HF}| E_{i a}^{\beta} \hat{H} E_{a i}^{\alpha}|\mathrm{HF}\rangle,
$$

where $E_{a i}^{\alpha}=a_{a \alpha}^{\dagger} a_{i \alpha}$ and $E_{a i}^{\beta}=a_{a \beta}^{\dagger} a_{i \beta}$.
2. In this exercise, we shall determine the gradient for the closed-shell Hartree-Fock energy

$$
E_{P Q}^{(1)}(\boldsymbol{\kappa})=\frac{\partial\langle\operatorname{cs}| \exp (\hat{\kappa}) \hat{H} \exp (-\hat{\kappa})|\operatorname{cs}\rangle}{\partial \kappa_{P Q}}
$$

for a non-vanishing $\hat{\kappa}$ that contains only real parameters $\kappa_{P Q}$. According to exercise 4.3^{\star}, the derivative of an exponential operator is

$$
\frac{\partial \exp (-\hat{\kappa})}{\partial \kappa_{P Q}}=-\sum_{R S} \frac{\exp \left[i\left(\lambda_{R}-\lambda_{S}\right)\right]-1}{i\left(\lambda_{R}-\lambda_{S}\right)}\left(U_{P R}^{\star} U_{Q S}-U_{Q R}^{\star} U_{P S}\right) \bar{a}_{R}^{\dagger} \bar{a}_{S} \exp (-\hat{\kappa})
$$

where $U_{P Q}$ are the elements of the unitary matrix \mathbf{U} that diagonalizes $\boldsymbol{\kappa}$; and λ_{P} are the real eigenvalues of $\boldsymbol{i} \boldsymbol{\kappa}$:

$$
i \boldsymbol{\kappa}=\mathbf{U} \boldsymbol{\lambda} \mathbf{U}^{\dagger}
$$

The \bar{a}_{P}^{\dagger} are the creation operators in the eigenvector-basis of $\boldsymbol{\kappa}$,

$$
\bar{a}_{P}^{\dagger}=\sum_{R} a_{R}^{\dagger} U_{R P}
$$

(a) Show that the elements of the gradient are given by

$$
E_{P Q}^{(1)}(\boldsymbol{\kappa})=\sum_{R S} \frac{\exp \left[i\left(\lambda_{R}-\lambda_{S}\right)\right]-1}{i\left(\lambda_{R}-\lambda_{S}\right)}\left(U_{P R}^{\star} U_{Q S}-U_{Q R}^{\star} U_{P S}\right)
$$

(b) Specialize this result to the case $\boldsymbol{\kappa}=\mathbf{0}$.
3. * Consider the orbital-rotation operator

$$
\hat{\kappa}=\sum_{P>Q} \kappa_{P Q}\left(a_{P}^{\dagger} a_{Q}-a_{Q}^{\dagger} a_{P}\right),
$$

where $\kappa_{P Q}$ are real parameters.
(a) Verify the relation

$$
\exp [-(\hat{\kappa}+\delta \hat{\kappa})]-\exp (-\hat{\kappa}) \int_{0}^{1} \frac{d}{d z} \exp [-(\hat{\kappa}+\delta \hat{\kappa}) z] \exp (\kappa z) d z \exp (-\hat{\kappa})
$$

(b) Using this result, write the first-order variation of $\exp (-\hat{\kappa})$ with respect to $\delta \hat{\kappa}$ as

$$
\delta \exp (-\hat{\kappa})=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(n+1)!} \underbrace{[\hat{\kappa},[\hat{\kappa}, \ldots[\hat{\kappa}, \delta \hat{\kappa}] \ldots]]}_{n \text { commutators }} \exp (-\hat{\kappa})
$$

(c) Show, that the real antisymmetric matrix $\boldsymbol{\kappa}$ with elements

$$
[\boldsymbol{\kappa}]_{P Q}=\left\{\begin{array}{cc}
\kappa_{P Q} & P \geq Q \\
-\kappa_{P Q} & P<Q
\end{array}\right.
$$

can be diagonalized as

$$
\boldsymbol{\kappa}=-i \mathbf{U} \boldsymbol{\lambda} \mathbf{U}^{\dagger}
$$

where \mathbf{U} is a unitary matrix and $\boldsymbol{\lambda}$ a real diagonal matrix.
(d) The eigenvectors \mathbf{U} define a basis

$$
\bar{a}_{P}^{\dagger}=\sum_{R} a_{R}^{\dagger} U_{R P}
$$

Show that, in this eigenvector basis, the orbital-rotation operator and its firstorder variation may be expressed as

$$
\begin{aligned}
\hat{\kappa} & =-i \sum_{P} \lambda_{P} \bar{a}_{P}^{\dagger} \bar{a}_{P} \\
\delta \hat{\kappa} & =\sum_{P Q}\left[\mathbf{U}^{\dagger} \delta \boldsymbol{\kappa} \mathbf{U}\right]_{P Q} \bar{a}_{P}^{\dagger} \bar{a}_{Q} .
\end{aligned}
$$

(e) Using the previous expansions, rewrite the expression for $\delta \exp (-\hat{\kappa})$ as

$$
\delta \exp (-\hat{\kappa})=-\sum_{P Q} \frac{\exp \left[i\left(\lambda_{P}-\lambda_{Q}\right)\right]-1}{i\left(\lambda_{P}-\lambda_{Q}\right)}\left[\mathbf{U}^{\dagger} \delta \boldsymbol{\kappa} \mathbf{U}\right]_{P Q} \bar{a}_{P}^{\dagger} \bar{a}_{Q} \exp (-\hat{\kappa})
$$

(f) Show that the first derivatives of the orbital-rotation operator are given by

$$
\frac{\partial \exp (-\hat{\kappa})}{\partial \kappa_{P Q}}=-\sum_{R S} \frac{\exp \left[i\left(\lambda_{R}-\lambda_{S}\right)\right]-1}{i\left(\lambda_{R}-\lambda_{S}\right)}\left(U_{P R}^{\star} U_{Q S}-U_{Q R}^{\star} U_{P S}\right) \bar{a}_{R}^{\dagger} \bar{a}_{S} \exp (-\hat{\kappa}),
$$

4. * In the optimization of a closed-shell electronic system, the nonredundant orbitalrotation parameters

$$
\boldsymbol{\kappa}=\left(\begin{array}{cc}
\mathbf{0} & \boldsymbol{\kappa}_{A I}^{T} \\
-\boldsymbol{\kappa}_{A I} & \mathbf{0}
\end{array}\right)
$$

determine the transformation from the original MOs $\phi_{p}(\mathbf{0})$ to a set of improved MOs $\phi_{p}(\boldsymbol{\kappa})$ as $\phi_{p}(\boldsymbol{\kappa})=\sum_{q} \phi_{p}(\mathbf{0}) \exp (-\boldsymbol{\kappa})_{q p}$. A further rotation of $\phi_{p}(\boldsymbol{\kappa})$ involving the redundant parameters

$$
\rho=\kappa^{\mathrm{red}}=\left(\begin{array}{cc}
\boldsymbol{\kappa}_{I J} & 0 \\
0 & \boldsymbol{\kappa}_{A B}
\end{array}\right)
$$

gives a new MO basis $\psi_{p}(\boldsymbol{\rho})=\sum_{q} \phi_{q}(\boldsymbol{\kappa}) \exp (-\boldsymbol{\rho})_{q p}$ which is equivalent to $\phi_{p}(\boldsymbol{\kappa})$ in the sense that it gives the same energy; in other words, the total energy is invariant to this transformation. In this exercise, we show that the choice of redundant parameters $\rho=0$ minimizes the function

$$
D(\boldsymbol{\rho})=\sum_{p}\left\|\phi_{p}(\mathbf{0})-\psi_{p}(\boldsymbol{\rho})\right\|^{2},
$$

which represents the difference between the original and optimized MOs.
(a) Show that the difference measure $D(\boldsymbol{\rho})$ can be expressed in the matrix form

$$
D(\boldsymbol{\rho})=2 \operatorname{Tr}[\mathbf{1}-\exp (-\boldsymbol{\kappa}) \exp (-\boldsymbol{\rho})] .
$$

(b) Show that the first-order variation of $D(\boldsymbol{\rho})$ at $\boldsymbol{\rho}=\mathbf{0}$ becomes

$$
\delta D(\boldsymbol{\rho})=2 \operatorname{Tr} \mathbf{W} \delta \boldsymbol{\rho},
$$

where

$$
\mathbf{W}=\left(\begin{array}{cc}
\mathbf{W}_{I J} & \mathbf{0} \\
\mathbf{0} & \mathbf{W}_{A B}
\end{array}\right)=\left(\begin{array}{cc}
\exp (-\boldsymbol{\kappa})_{I J} & \mathbf{0} \\
\mathbf{0} & \exp (-\boldsymbol{\kappa})_{A B}
\end{array}\right)
$$

(c) Show that the exponential of $\boldsymbol{\kappa}$ can be written as

$$
\exp (-\boldsymbol{\kappa})=\left(\begin{array}{cc}
\cos \mathbf{A} & -\boldsymbol{\kappa}_{A I}^{T} \mathbf{B}^{-1} \sin \mathbf{B} \\
\boldsymbol{\kappa}_{A I} \mathbf{A}^{-1} \sin \mathbf{A} & \cos \mathbf{B}
\end{array}\right)
$$

where $\mathbf{A}=\left(\boldsymbol{\kappa}_{A I}^{T} \boldsymbol{\kappa}\right)^{1 / 2}$, and $\mathbf{B}=\left(\boldsymbol{\kappa}_{A I} \boldsymbol{\kappa}^{T}\right)^{1 / 2}$.
(d) Use the previous result for $\exp (-\boldsymbol{\kappa})$ to show that $\boldsymbol{\rho}=\mathbf{0}$ represents a stationary point.
(e) Show that, at the stationary point, the second-order variation of $D(\boldsymbol{\rho})$ becomes

$$
\delta^{2} D=-\operatorname{Tr} \mathbf{W} \delta \boldsymbol{\rho} \delta \boldsymbol{\rho}
$$

(f) Show that \mathbf{W} is positive definite for small $\boldsymbol{\kappa}$ and use this to show that the secondorder variation is positive, implying that the stationary point is a minimum. Thus, for a closed-shell wave functions, $\boldsymbol{\rho}=\mathbf{0}$ gives the maximum overlap between the rotated and original MOs.

Chapter 6

Configuration interaction

6.1 Configuration-interaction wave function

The configuration-interaction (CI) wave function is constructed as a linear combination of Slater determinants (or configuration-state functions):

$$
\begin{equation*}
|\mathbf{C}\rangle=\sum_{i} C_{i}|i\rangle \tag{6.1}
\end{equation*}
$$

with the coefficients determined by a variational optimization of the expectation value of the electronic energy, i.e., by minimization for the ground state

$$
\begin{equation*}
E_{\mathrm{CI}}=\min _{\mathbf{C}} \frac{\langle\mathbf{C}| \hat{H}|\mathbf{C}\rangle}{\langle\mathbf{C} \mid \mathbf{C}\rangle} \tag{6.2}
\end{equation*}
$$

As discussed earlier, this is equivalent to the solution of an eigenvalue equation $\mathbf{H C}=$ $E_{\mathrm{CI}} \mathbf{C}$. The construction of the CI wave function may thus be carried out by diagonalizing the Hamiltonian matrix $H_{i j}=\langle i| \hat{H}|j\rangle$, but more often iterative techniques are used.

In particular, we have to construct the CI wave function in a finite one-electron basis. The full CI (FCI) wave function consists of all the configurations that can be generated in a given basis, and it is most convenient to think it as generated from a single reference configuration, which dominates the wave function and usually is the Hartree-Fock state, by the application of a linear combination of spin-orbital excitation operators

$$
\begin{equation*}
|\mathrm{FCI}\rangle=\left(1+\sum_{A I} \hat{X}_{I}^{A}+\frac{1}{2} \sum_{A B I J} \hat{X}_{I J}^{A B}+\cdots\right)|\mathrm{HF}\rangle, \tag{6.3}
\end{equation*}
$$

where for example

$$
\begin{aligned}
\hat{X}_{I}^{A}|H F\rangle & =C_{I}^{A} a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle \\
\hat{X}_{I J}^{A B}|H F\rangle & =C_{I J}^{A B} a_{A}^{\dagger} a_{B}^{\dagger} a_{I} a_{J}|\mathrm{HF}\rangle .
\end{aligned}
$$

	$R=R_{\text {ref }}$			$R=2 R_{\text {ref }}$	
	$E-E_{\mathrm{FCI}}$	Weight		$E-E_{\mathrm{FCI}}$	Weight
RHF	0.2178	0.9410		0.3639	0.5896
CISD	0.0120	0.9980		0.0720	0.9487
CISDT	0.0090	0.9985		0.0560	0.9590
CISDTQ	0.0003	1.0000		0.0058	0.9988
CISDTQ5	0.0001	1.0000		0.0022	0.9995

Table 6.1: The electronic energies of truncated CI wave functions for the water molecule (cc-pVDZ basis) relative to the FCI energy.

Thus, we may characterize the determinants in the FCI expansion as single (S), double (D), triple (T), quadruple (Q), quintuple (5), and so forth excitations relative to the HartreeFock state.

The number of determinants in an FCI wave function is

$$
\begin{equation*}
N_{\mathrm{det}}=\binom{n}{k}^{2}=\left(\frac{n!}{k!(n-k)!}\right)^{2} \tag{6.4}
\end{equation*}
$$

for a system with n orbitals containing k alpha and k beta electrons. For example, when $n=2 k, N_{\text {det }} \approx 16^{k} / k \pi$ - for large k, the number of determinants increases by a factor of 16 for each new pair of electrons and orbitals!

6.1.1 Single-reference CI wave functions

As the FCI wave function is obtainable only for the smallest systems, it becomes necessary to truncate the expansion, so that only a subset of the determinants are included, based on the excitation level. This is justified, since in general the lower-order excitations are more important than those of high orders. In principle, this procedure of hierarchal truncation may be continued until the FCI wave function is recovered. Since the CI model is variational, the FCI energy is approached from the above.

In Table 6.1 the truncated CI functions are examined. Whereas the contributions drop monotonically, the step from an even-order excitation level to an odd-order is far more pronounced than the step from an odd to an even-order excitation level; hence the CI expansion is preferably truncated at even orders. For example, the first useful truncated CI wave function - the CI singles-and-doubles wave function (CISD) - recovers 94.5% of the correlation energy, the inclusion of triples on top of that improves the treatment to 95.9%, while as much as 99.9% of the correlation energy is recovered at the CISDTQ level.

6.1.2 Multi-reference CI wave functions

In the stretched geometry $2 R_{\text {ref }}$, the Hartree-Fock determinant is less dominant. Clearly, the strategy of defining a correlation hierarchy in terms of excitations out of a single
reference determinant such as the Hartree-Fock determinant does not provide the best possible description of the dissociation process. To overcome this, we may introduce CI wave functions based on the idea of a reference space comprising more than a single determinant: The multi-reference CI (MRCI) wave functions is generated by including in the wave function all configurations belonging to this reference space as well as all excitations up to a given level from each reference configuration, yielding, e.g., the multi-reference singles-and-doubles CI (MRSDCI) wave function.

The construction of a MRCI wave function begins with the generation of a set of orbitals and the reference space of configurations. For example, in the water molecule, we would include in our reference space for instance the configurations obtained by distributing the eight valence electrons among the six valence MOs in all possible ways (consistent with the spin- and space-symmetry restrictions).

- MRSDCI model is very accurate, if all the important configurations are included in the reference space.
- The number of important configurations becomes, however, very large, making thus the model applicable to quite small systems.
- The choice of the active space requires a lot of chemical intuition and patience.

Another way of truncating the FCI expansion is to construct the wave function from individual configurations, the selection of which is based on physical intuition or perturbational estimates.

6.1.3 Optimization of the CI wave function

For large CI expansions it is impossible to set up and diagonalize the Hamiltonian matrix of the eigenvalue equation. However, usually only a few of the lowest eigenvalues are of interest, and we may determine them by iterative methods, where the eigenvectors and eigenvalues are generated by a sequence of linear transformations of the form $\sigma=\mathbf{H C}$, where \mathbf{C} is some trial vector. These methods can be devised for both of the CI eigenvalue problem and the optimization of the CI energy (6.2). The most often used strategies rely on the second-order Newton's method and its approximations.

6.1.4 On the disadvantages of the CI approach

CI wave functions truncated at a given excitation level relative to a reference configuration do not provide size-extensive energies.

- For example, if two fragments are described at the CISD level, then a size-extensive treatment of the compound system requires that the wave function is augmented with certain triples and quadruples; more precisely those that represent products of single and double excitations in the two subsystems.
- An approach called quadratic CI (QCI) is a size-extensive revision of the CI model. Other widely used approach to overcome the lack of size-extensivity is the Davidson correction applied on top of the truncated CI energy.

The CI description of the electronic system is not at all compact. Even though higher excitations are less important than those of lower orders, their number is enormous. Therefore, the CI wave function converges slowly with the number of variational parameters.

Both of these problems are due to the linear parameterization in the CI model (6.1).

6.2 Multi-configurational SCF theory

The multi-configurational self-consistent field (MCSCF) theory is a generalization of the Hartree-Fock wave function to systems dominated by more than one electronic configuration. This method is particularly useful in the description of bond breakings and molecular dissociation processes.

In MCSCF theory, the wave function is written as a linear combination of determinants, whose expansion coefficients C_{i} are optimized simultaneously with the MOs according to the variation principle:

$$
\begin{equation*}
|\boldsymbol{\kappa}, \mathbf{C}\rangle=\exp (-\hat{\kappa}) \sum_{i} C_{i}|i\rangle \tag{6.5}
\end{equation*}
$$

The ground-state MCSCF wave function is obtained by minimizing the energy with respect to the variational parameters,

$$
\begin{equation*}
E_{\mathrm{MCSCF}}=\min _{\boldsymbol{\kappa}, \mathbf{C}} \frac{\langle\boldsymbol{\kappa}, \mathbf{C}| \hat{H}|\boldsymbol{\kappa}, \mathbf{C}\rangle}{\langle\boldsymbol{\kappa}, \mathbf{C} \mid \boldsymbol{\kappa}, \mathbf{C}\rangle} \tag{6.6}
\end{equation*}
$$

6.2.1 MCSCF wave function of H_{2}

A two-configuration MCSCF wave function of the hydrogen molecule is

$$
|\mathrm{MC}\rangle=C_{1} a_{1 \sigma_{g} \alpha}^{\dagger} a_{1 \sigma_{g} \beta}^{\dagger}|\mathrm{vac}\rangle+C_{2} a_{1 \sigma_{u} \alpha}^{\dagger} a_{1 \sigma_{u} \beta}^{\dagger}|\mathrm{vac}\rangle,
$$

where the variation principle is invoked to optimize the configuration coefficients as well as the orbitals. Its behaviour in H_{2} dissociation is sketched in Figure 6.2.1. The solid line is the MCSCF potential energy curve in the cc-pVQZ basis set. The thick and the dashed lines are for FCI and RHF, respectively.

For any larger system than the H_{2} molecule the selection of configuration space is the greatest difficulty in the MCSCF calculation. It is very often impossible to generate a sufficient MCSCF configuration, which is computationally tractable. The selection is usually carried out by dividing the MO space in inactive, active, and secondary orbitals.

- The inactive orbitals are set to be doubly occupied.

Figure 6.1: MCSCF potential energy curve of H_{2}.

- The active orbitals have variable occupancies of 0 , 1 , or 2 . The MCSCF expansion is then obtained by distributing the active electrons in all possible ways among the active orbitals. In the final optimized state, the active orbitals have non-integer occupation numbers between 0 and 2 .
- The secondary orbitals are unoccupied throughout the optimization.

This scheme is called the complete active space SCF method (CASSCF). We note that the CASSCF wave function is identical to the FCI wave function, when all the orbitals of the system are active; and reduces to the Hartree-Fock wave function when the active space is empty.

In restricted active space $S C F$ (RASSCF) calculations, the active orbital space is further divided into three subspaces: RAS1, with an upper limit on the allowed number of holes in each configuration; RAS2, with no restrictions enforced; and RAS3, with an upper limit on the allowed number of electrons in each configuration. This allows for larger active spaces than CASSCF.

In practise, the simultaneous optimization of orbitals and CI coefficients is a difficult nonlinear optimization problem, which restricts the MCSCF expansions to be significantly smaller than those encountered in the CI wave functions. By itself, the MCSCF model is not suited to the treatment of dynamical correlation, that requires large basis sets and long configuration expansions.

6.2.2 Selection of the active space

One popular approach for the choice of the MCSCF active spaces is based on the natural occupation numbers obtained from a preceding second-order Møller-Plesset perturbation theory calculation. For the water molecule in the cc-pVTZ basis in the order $\left(A_{1}, B_{1}, B_{2}\right.$, A_{2}) we obtain

```
Natural orbital occupation numbers, symmetry 1
\begin{tabular}{lllll}
1.99953982 & 1.98393843 & 1.96476967 & 0.02261760 & 0.01156239 \\
0.00648257 & 0.00552982 & 0.00113424 & 0.00083070 & 0.00060446 \\
0.00047604 & 0.00036853 & 0.00035173 & 0.00019527 & 0.00013628 \\
0.00008516 & 0.00007619 & 0.00005837 & 0.00004768 & 0.00003078 \\
0.00002067 & 0.00001341 & 0.00000675 & & \\
& & & &
\end{tabular}
\begin{tabular}{lllll}
1.96724668 & 0.01959000 & 0.00552930 & 0.00068405 & 0.00064037
\end{tabular}
\begin{tabular}{lllll}
0.00042732 & 0.00035178 & 0.00013127 & 0.00005653 & 0.00004947
\end{tabular}
Natural orbital occupation numbers, symmetry 3
\begin{tabular}{lllll}
1.96415036 & 0.02452309 & 0.00641995 & 0.00104230 & 0.00086705 \\
0.00065869 & 0.00039618 & 0.00019746 & 0.00013435 & 0.00011930 \\
0.00006217 & 0.00005180 & 0.00003331 & 0.00001667 & 0.00001255 \\
0.00000755 & 0.00000429 & & &
\end{tabular}
Natural orbital occupation numbers, symmetry 4
\begin{tabular}{lllll}
0.00626166 & 0.00079588 & 0.00038289 & 0.00012271 & 0.00006547 \\
0.00006019 & 0.00001431 & & &
\end{tabular}
```

Table 6.2: Natural occupation numbers of $\mathrm{C}_{2} \mathrm{v}$ water molecule in cc-pVTZ basis.

We can choose active spaces of different flexibility:

- Smallest possible active space seems to be $(2,0,2,0)$, i.e. four electrons in four MOs $3 a_{1}, 4 a_{1}, 1 b_{2}$, and $2 b_{2}$. This corresponds to a combination of 12 determinants.
- For more accurate description, eight electrons distributed on (3,1,2,0) active space, corresponding to 37 configurations, gives almost similar potential curve.
- For further improvement, an eight-electron $(6,3,3,1)$ active space is of high quality and sufficient for incorporating dynamical correlation effects as well. However, we get almost the same curve by supplementing the CAS $(3,1,2,0)$ wave function by RAS3 space ($3,2,1,0$) limiting the number of electrons in RAS3 space to be 2 at maximum. This reduces the number of determinants from 36240 to 2708.

6.3 Further reading

- T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley 2002), pp. 523-647.
- I. Shavitt, The Method of Configuration Interaction, in H. F. Schaefer III (ed), Methods of Electronic Structure Theory (Plenum Press 1977).
- H.-J. Werner, Matrix-Formulated Direct Multiconfiguration Self-Consistent Field and Multiconfiguration Reference Configuration-Interaction Methods, in K. P. Lawley (ed), Ab Initio Methods in Quantum Chemistry (Wiley 1987).

6.4 Exercises for Chapter 6

1. Calculate the non-vanishing one- and two-electron density-matrix elements

$$
\begin{aligned}
D_{p q} & =\langle 0| E_{p q}|0\rangle \\
d_{p q r s} & =\langle 0| e_{p q r s}|0\rangle=\sum_{\sigma \tau}\langle 0| a_{p \sigma}^{\dagger} a_{q \tau}^{\dagger} a_{r \sigma} a_{s \tau}|0\rangle
\end{aligned}
$$

for the following states of the H 2 molecule in the minimal basis:
(a) the single-configuration singlet states

$$
\begin{aligned}
\left|{ }^{1} \sigma_{g}^{2}\right\rangle & =a_{1 \alpha}^{\dagger} a_{1 \beta}^{\dagger}|\mathrm{vac}\rangle \\
\left|{ }^{1} \sigma_{u}^{2}\right\rangle & =a_{2 \alpha}^{\dagger} a_{2 \beta}^{\dagger}|\mathrm{vac}\rangle
\end{aligned}
$$

(b) the two-configuration singlet state

$$
\left|{ }^{1} \Sigma_{g}^{+}(\tau)\right\rangle=\cos (\tau)\left|1 \sigma_{g}^{2}\right\rangle+\sin (\tau)\left|1 \sigma_{u}^{2}\right\rangle
$$

(c) the triplet and singlet ungerade states

$$
\begin{aligned}
\left|{ }^{3} \Sigma_{u}^{+}\right\rangle & =\frac{1}{\sqrt{2}}\left(a_{2 \alpha}^{\dagger} a_{1 \beta}^{\dagger}+a_{2 \beta}^{\dagger} a_{1 \alpha}^{\dagger}\right)|\mathrm{vac}\rangle \\
\left|{ }^{1} \Sigma_{u}^{+}\right\rangle & =\frac{1}{\sqrt{2}}\left(a_{2 \alpha}^{\dagger} a_{1 \beta}^{\dagger}-a_{2 \beta}^{\dagger} a_{1 \alpha}^{\dagger}\right)|\mathrm{vac}\rangle
\end{aligned}
$$

2. \star Consider a dimer of two noninteracting H2 molecules, each described in a minimal basis.
(a) Show that the ground-state FCI wave function can be parametrized as

$$
|\mathrm{FCI}\rangle=\left(1+c_{1} \hat{D}_{1}+c_{2} \hat{D}_{2}+c_{12} \hat{D}_{1} \hat{D}_{2}\right)|\mathrm{HF}\rangle
$$

where the operator $\hat{D}_{I}=a_{u_{I}}^{\dagger} a_{u_{I} \beta}^{\dagger} a_{g_{I} \beta} a_{g_{I} \alpha}$ creates a double excitation from the Hartree-Fock state for molecule I.
(b) Show that the FCI eigenvalue problem becomes

$$
\left(\begin{array}{cccc}
0 & K & K & 0 \\
K & 2 \Delta & 0 & K \\
K & 0 & 2 \Delta & K \\
0 & K & K & 4 \Delta
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{12}
\end{array}\right)=E_{\text {corr }}\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{12}
\end{array}\right)
$$

where $E_{\text {corr }}$ is the FCI correlation energy of the H_{2} dimer and

$$
\begin{aligned}
K & =g_{g u g u} \\
2 \Delta & =2 h_{u u}-2 h_{g g}+g_{u u u u}-g_{g g g g} .
\end{aligned}
$$

(c) Find the ground-state FCI solution.
3. \star Assume that we are carrying out an MCSCF calculation of the electronic state

$$
|0\rangle=\sum_{i} C_{i}^{(0)}|i\rangle
$$

where the determinants share a common set of inactive orbitals. Show that, for this state, the Hamiltonian matrix elements $\langle i| \hat{H}|0\rangle$ may be written in the form

$$
\langle i| \hat{H}|0\rangle=\sum_{v w}^{\mathrm{I}} F_{v w}\langle i| \hat{E}_{v w}|0\rangle+\frac{1}{2} \sum_{v w x y} g_{v w x y}\langle i| \hat{e}_{v w x y}|0\rangle+C_{i}^{0 \mathrm{I}} E
$$

where ${ }^{\mathrm{I}} \mathbf{F}$ is the inactive Fock matrix

$$
{ }^{\mathrm{I}} F_{m n}=h_{m n}+\sum_{i}\left(2 g_{m n i i}-g_{m i i n}\right)
$$

and ${ }^{\mathrm{I}} E$ the inactive energy. Obtain an expression for the MCSCF electronic gradient.
4. \star Show that the FCI wave function is size-extensive but the truncated CI-doubles (CID) wave function is not.

Chapter 7

Description of dynamical correlation

7.1 Coupled-cluster theory

As noted earlier, the shortcomings of the CI hierarchy - the lack of size-extensivity and the slow convergence towards the FCI limit - are due to the linear expansion. However, we may recast the FCI expansion (6.3) in the form of a product wave function

$$
\begin{equation*}
|\mathrm{CC}\rangle=\left[\prod_{\mu}\left(1+t_{\mu} \hat{\tau}_{\mu}\right)\right]|\mathrm{HF}\rangle, \tag{7.1}
\end{equation*}
$$

where we have introduced a generic notation $\hat{\tau}_{\mu}$ for an excitation operator of unspecified excitation level ($\mathrm{D}, \mathrm{T}, \mathrm{Q}, \ldots$) and the associated cluster amplitude t_{μ}. This (full) coupledcluster (CC) wave function differs from the FCI wave function by the presence of terms that are nonlinear in the excitation operators. Of course, the CC and FCI wave functions are completely equivalent provided that all the excitations are included.

Since the $\hat{\tau} s$ always excite from the set of occupied Hartree-Fock spin-orbitals to the virtual ones, $\left[\hat{\tau}_{\mu}, \hat{\tau}_{\nu}\right]=0$. Due to the presence of the product excitations in the coupledcluster state (7.1), each determinant can thus be reached in several different ways. For example, the determinant $|\mu \nu\rangle=\hat{\tau}_{\mu} \hat{\tau}_{\nu}|\mathrm{HF}\rangle=\hat{\tau}_{\nu} \hat{\tau}_{\mu}|\mathrm{HF}\rangle$ may be reached with an overall amplitude equal to the sum of the individual amplitude. With respect to this determinant, the double-excitation amplitude $t_{\mu \nu}$ is referred to as a connected cluster amplitude and subsequent singles excitation amplitudes $t_{\mu} t_{\nu}$ as a disconnected cluster amplitude.

7.1.1 The CC Schrödinger equation

By analogy with the CI theory, we could attempt to determine the CC state by minimizing the expectation value of the Hamiltonian with respect to the amplitudes. Due to the nonlinear parameterization of the CC model, the analogous variational conditions would give rise to an intractable set of nonlinear equations. Hence, in practice coupled-cluster models are not solved using the variation principle, and the CC energies are therefore non-variational.

Instead, by multiplying the eigenvalue equation $\hat{H}|\mathrm{CC}\rangle=E|\mathrm{CC}\rangle$ by $\langle\mu|=\langle\mathrm{HF}| \hat{\tau}_{\mu}^{\dagger}$ we obtain the projected coupled-cluster equations

$$
\begin{equation*}
\langle\mu| \hat{H}|\mathrm{CC}\rangle=E\langle\mu \mid \mathrm{CC}\rangle, \tag{7.2}
\end{equation*}
$$

where the CC energy is obtained by projection against the Hartree-Fock state (note that $\langle\mathrm{HF} \mid \mathrm{CC}\rangle=1$)

$$
\begin{equation*}
E=\langle\mathrm{HF}| \hat{H}|\mathrm{CC}\rangle \tag{7.3}
\end{equation*}
$$

These equations are nonlinear in amplitudes as well, but unlike the variational conditions, this expansion will, due to the Slater's rules, terminate after few terms, as we shall see later.

7.1.2 The coupled-cluster exponential ansatz

Because the excitation operators in (7.1) commute, i.e. $\hat{\tau}_{\mu}^{2}=0$, the correlating operators can be written in more convenient form, known as the exponential ansatz for the coupledcluster wave function,

$$
\begin{equation*}
|\mathrm{CC}\rangle=\exp (\hat{T})|\mathrm{HF}\rangle, \tag{7.4}
\end{equation*}
$$

where we have introduced the cluster operator

$$
\begin{equation*}
\hat{T}=\sum_{\mu} t_{\mu} \hat{\tau}_{\mu} \tag{7.5}
\end{equation*}
$$

In CC theory, a hierarchy of approximations is established by partitioning the cluster operator in the form

$$
\begin{equation*}
\hat{T}=\hat{T}_{1}+\hat{T}_{2}+\hat{T}_{3}+\cdots+\hat{T}_{n} \tag{7.6}
\end{equation*}
$$

where, for example,

$$
\begin{align*}
& \hat{T}_{1}=\sum_{A I} t_{I}^{A} \hat{\tau}_{I}^{A}=\sum_{A I} t_{I}^{A} a_{A}^{\dagger} a_{I} \tag{7.7}\\
& \hat{T}_{2}=\sum_{A>B, I>J} t_{I J}^{A B} \hat{\tau}_{I J}^{A B}=\frac{1}{4} \sum_{A I B J} t_{I J}^{A B} a_{A}^{\dagger} a_{I} a_{B}^{\dagger} a_{J} . \tag{7.8}
\end{align*}
$$

Each excitation operator in \hat{T} excites at least one electron from an occupied Hartree-Fock spin-orbital to a virtual one. It should be noted that for a system with N electrons, the expansion terminates after N terms. We further note that $\left[\hat{T}_{i}, \hat{T}_{j}\right]=0$ as a trivial consequence of the individual excitation operator commutation relations. Moreover,

$$
\begin{aligned}
& \langle\mathrm{HF}| \hat{\tau}_{\mu}=0 \\
& \hat{\tau}_{\mu}^{\dagger}|\mathrm{HF}\rangle=0,
\end{aligned}
$$

because it is impossible to excite an electron from an unoccupied orbital.

To compare the CC model with the CI model, we expand the exponential operator and collect terms to the same order in excitation level:

$$
\exp (\hat{T})|\mathrm{HF}\rangle=\sum_{i=0}^{N} \hat{C}_{i}|\mathrm{HF}\rangle
$$

The lowest-order operators \hat{C}_{i} are given by

$$
\begin{aligned}
& \hat{C}_{0}=1 \\
& \hat{C}_{1}=\hat{T}_{1} \\
& \hat{C}_{2}=\hat{T}_{2}+\frac{1}{2!} \hat{T}_{1}^{2} \\
& \hat{C}_{3}=\hat{T}_{3}+\hat{T}_{1} \hat{T}_{2}+\frac{1}{3!} \hat{T}_{1}^{3} \\
& \hat{C}_{4}=\hat{T}_{4}+\hat{T}_{3} \hat{T}_{1}+\frac{1}{2!} \hat{T}_{1}^{2} \hat{T}_{2}+\frac{1}{4!} \hat{T}_{1}^{4}
\end{aligned}
$$

demonstrating the composition of the excitation processes. The advantages of the cluster parameterization arise in truncated wave functions and are related to the fact that even at the truncated level, the coupled-cluster state contains contributions from all determinants in the FCI wave function, with weights obtained from the different excitation processes.

Similarly with the CI theory, a hierarchy of CC models is introduced by truncating the cluster operator at different excitation levels. The simplest successful CC wave function is the coupled-cluster singles-and-doubles (CCSD) model. In this model, the \hat{T}_{2} operator describes the electron-pair interactions and \hat{T}_{1} carries out the corresponding orbital relaxations. Its computational cost scales as $\mathcal{O}\left(N^{6}\right)$. For higher accuracy, the connected triple excitations have to be taken into account, which leads to the coupled-cluster singles-doubles-and-triples (CCSDT) model. This model describes already the dynamical correlation almost perfectly, but is computationally very demanding, $\mathcal{O}\left(N^{8}\right)$ and is thus applicable to smallest molecules only. The triples excitations can be estimated in a perturbational way, giving rise to the $\operatorname{CCSD}(T)$ method, which is a good compromise between the computational cost (exhibiting an $\mathcal{O}\left(N^{7}\right)$ scaling) and accuracy. It is often considered to be the best single-reference treatment of molecular Schrödinger equation that is applicable in practise.

7.1.3 CI and CC models compared

Let us at this point compare the CI and CC hierarchies. Owing to the disconnected clusters, CC wave functions truncated at a given excitation level also contain contributions from determinants corresponding to higher-order excitations; whereas CI wave functions truncated at the same level contain contributions only from determinants up to this level. This is reflected in the convergence towards the FCI limit, which is typical of small systems. For larger systems, CI starts to behave very badly, while the CC description is unaffected by the number of electrons.

Figure 7.1: On the left: The CC dissociation curves of the $\mathrm{C}_{2 v}$ water molecule in the cc-pVDZ basis. On the right: corresponding differences between the CC and FCI energies. RHF reference state is plotted the full line and UHF with the dashed.

Figure 7.2: The error with respect to FCI of CC and CI wave functions for the water molecule at the equilibrium geometry in the cc-pVDZ basis.

According to the previous discussion, the projected coupled-cluster equations are written as

$$
\begin{align*}
\langle\mathrm{HF}| \hat{H} \exp (\hat{T})|\mathrm{HF}\rangle & =E \tag{7.9}\\
\langle\mu| \hat{H} \exp (\hat{T})|\mathrm{HF}\rangle & =E\langle\mu| \exp (\hat{T})|\mathrm{HF}\rangle \tag{7.10}
\end{align*}
$$

- The excited projection manifold $\langle\mu|$ comprises the full set of all determinants up to the chosen truncation level.
- For the full CC wave function, the number of equations is equal to the number of determinants and the solution of the projected equations recovers the FCI wave function.
- The nonlinear equations (7.9) must be solved iteratively, substituting in every iteration the CC energy calculated from (7.10).

It is convenient to rewrite the projected CC equations using the non-Hermitian similaritytransformed Hamiltonian $\hat{\bar{H}}=\exp (-\hat{T}) \hat{H} \exp (\hat{T})$:

$$
\begin{align*}
\langle\mathrm{HF}| \exp (-\hat{T}) \hat{H} \exp (\hat{T})|\mathrm{HF}\rangle & =E \tag{7.11}\\
\langle\mu| \exp (-\hat{T}) \hat{H} \exp (\hat{T})|\mathrm{HF}\rangle & =0 \tag{7.12}
\end{align*}
$$

The equations (7.10) and (7.12) are completely equivalent (yet the equivalence is nontrivial for all the truncated CC models!), meaning that they yield same amplitudes and energy upon solution. They are referred to as the unlinked and linked coupled-cluster equations, respectively. Their computational cost is practically the same, but the linked equations
have some advantages: Although both yield the same, size-extensive wave function, the linked equations are size-extensive term by term, that simplifies some perturbational treatments; in addition, the CC approach excited states in mind is more fruitful to start from the linked equations. The main reason is however the following:

- When the Baker-Campbell-Hausdorff (BCH) expansion

$$
\begin{equation*}
\exp (\mathbf{A}) \mathbf{B} \exp (-\mathbf{A})=\mathbf{B}+[\mathbf{A}, \mathbf{B}]+\frac{1}{2!}[\mathbf{A},[\mathbf{A}, \mathbf{B}]]+\frac{1}{3!}[\mathbf{A},[\mathbf{A},[\mathbf{A}, \mathbf{B}]]]+\cdots \tag{7.13}
\end{equation*}
$$

is applied to the similarity-transformed Hamiltonian, one obtains

$$
\begin{equation*}
\exp (-\hat{T}) \hat{H} \exp (\hat{T})=\hat{H}+[\hat{H}, \hat{T}]+\frac{1}{2}[[\hat{H}, \hat{T}], \hat{T}]+\frac{1}{6}[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}]+\frac{1}{24}[[[[\hat{H}, \hat{T}], \hat{T}], \hat{T}], \hat{T}] \tag{7.14}
\end{equation*}
$$

the coupled-cluster equations are therefore no higher than quartic in the cluster amplitudes - for any truncation level or even for the full CC expansion.

- Due to the Brillouin theorem, the one-particle operators contribute only to second order. Furthermore, cluster operators higher than the doubles do not contribute to the CC energy since \hat{H} is a two-particle operator. As a result, only singles and doubles amplitudes contribute directly to the CC energy - irrespective of the truncation level of the cluster operator. Of course, the higher-order excitations contribute indirectly, since all amplitudes are coupled by the projected equations.

7.1.4 On coupled-cluster optimization techniques

The elements of the left-hand side of the CC amplitude equation (7.12) constitute the coupled-cluster vector function $\Omega_{\mu}(\mathbf{t})$, which can be expanded around the set of amplitudes of the current iteration $\mathbf{t}^{(n)}$:

$$
\boldsymbol{\Omega}\left(\mathbf{t}^{(n)}+\Delta \mathbf{t}\right)=\boldsymbol{\Omega}^{(0)}\left(\mathbf{t}^{(n)}\right)+\boldsymbol{\Omega}^{(1)}\left(\mathbf{t}^{(n)} \Delta \mathbf{t}+\cdots,\right.
$$

where $\boldsymbol{\Omega}^{(0)}$ is the vector function calculated from the amplitudes $\mathbf{t}^{(n)}$ and $\boldsymbol{\Omega}^{(1)}$ the CC Jacobian

$$
\begin{equation*}
\Omega_{\mu \nu}^{(1)}=\langle\mu| \exp \left(-\hat{T}^{(n)}\right)\left[\hat{H}, \hat{\tau}_{\nu}\right] \exp \left(\hat{T}^{(n)}\right)|\mathrm{HF}\rangle . \tag{7.15}
\end{equation*}
$$

Then an iterative scheme is established:

- Solve the set of linear equations

$$
\begin{equation*}
\boldsymbol{\Omega}^{(1)}\left(\mathbf{t}^{(n)}\right) \Delta \mathbf{t}^{(n)}=-\boldsymbol{\Omega}^{(0)}\left(\mathbf{t}^{(n)}\right) \tag{7.16}
\end{equation*}
$$

for $\Delta \mathbf{t}^{(n)}$

- Form the improved estimate

$$
\begin{equation*}
\mathbf{t}^{(n+1)}=\mathbf{t}^{(n)}+\Delta \mathbf{t}^{(n)} \tag{7.17}
\end{equation*}
$$

- Iterate Equations (7.16) and (7.17) until convergence in the amplitudes.

In more sophisticated implementations, this Newton-method-like approach is replaced by a scheme, where the solution of the linear equations as well as the construction of the Jacobian are avoided by the approximation

$$
\begin{equation*}
\Delta t_{\mu}^{(n)}=-\varepsilon_{\mu}^{-1} \Omega_{\mu}^{(0)}\left(\mathbf{t}^{(n)}\right) \tag{7.18}
\end{equation*}
$$

where, e.g. $\varepsilon_{i j}^{a b}=\left(\epsilon_{a}+\epsilon_{b}-\epsilon_{i}-\epsilon_{j}\right)$. Usually, the convergence is accelerated by the DIIS method.

7.1.5 The closed-shell CCSD model

We consider now in detail the important special case of CC theory: the closed-shell CCSD model. We recall that the singlet CCSD state is generated by $|\mathrm{CC}\rangle=\exp \left(\hat{T}_{1}+\hat{T}_{2}\right)|\mathrm{HF}\rangle$, hence only those terms in \hat{T}_{i} that transform as singlet operators should be retained in the cluster operator. It is easy to show that

$$
\begin{align*}
& {\left[\hat{S}_{ \pm}, \hat{T}_{i}\right]=0} \tag{7.19}\\
& {\left[\hat{S}_{z}, \hat{T}_{i}\right]=0} \tag{7.20}
\end{align*}
$$

These impose important constraints on the cluster amplitudes in the spin-orbital basis. Due to these, the singles cluster operator becomes

$$
\begin{equation*}
\hat{T}_{1}=\sum_{a i} t_{i}^{a} \hat{E}_{a i} \tag{7.21}
\end{equation*}
$$

and the doubles operator

$$
\begin{equation*}
\hat{T}_{2}=\frac{1}{2} \sum_{a i b j} t_{i j}^{a b} E_{a i} E_{b j} \tag{7.22}
\end{equation*}
$$

The cluster amplitudes are symmetric: $t_{i j}^{a b}=t_{j i}^{b a}$.
The CCSD energy is obtained from Eq. (7.11). By noting that $\langle\mathrm{HF}| \exp (-\hat{T})=\langle\mathrm{HF}|$, expanding the cluster operators and after some algebra we obtain the form

$$
\begin{equation*}
E_{\mathrm{CCSD}}=E_{\mathrm{HF}}+\frac{1}{2}\langle\mathrm{HF}|\left[\left[\hat{H}, \hat{T}_{1}\right], \hat{T}_{1}\right]|\mathrm{HF}\rangle+\langle\mathrm{HF}|\left[\hat{H}, \hat{T}_{2}\right]|\mathrm{HF}\rangle \tag{7.23}
\end{equation*}
$$

where the Hartree-Fock energy is given by $E_{\mathrm{HF}}=\langle\mathrm{HF}| \hat{H}|\mathrm{HF}\rangle$. By inserting the CCSD operators to the energy expression and calculating the commutators explicitly we obtain

$$
\begin{align*}
E_{\mathrm{CCSD}} & =E_{\mathrm{HF}}+\frac{1}{2} \sum_{a i b j} t_{i}^{a} t_{j}^{b}\langle\mathrm{HF}|\left[\left[\hat{H}, \hat{E}_{a i}\right], \hat{E}_{b j}\right]|\mathrm{HF}\rangle+\frac{1}{2} \sum_{a i b j} t_{i j}^{a b}\langle\mathrm{HF}|\left[\hat{H}, \hat{E}_{a i} \hat{E}_{b j}\right]|\mathrm{HF}\rangle \\
& =E_{\mathrm{HF}}+\frac{1}{2} \sum_{a i b j}\left(t_{i j}^{a b}+t_{i}^{a} t_{j}^{b}\right)\langle\mathrm{HF}|\left[\left[\hat{H}, \hat{E}_{a i}\right], \hat{E}_{b j}\right]|\mathrm{HF}\rangle \\
& =E_{\mathrm{HF}}+\sum_{a i b j}\left(t_{i j}^{a b}+t_{i}^{a} t_{j}^{b}\right) L_{i a j b} \tag{7.24}
\end{align*}
$$

where we have denoted $L_{p q r s}=2 g_{p q r s}-g_{p s r q}$.

7.1.6 The equation-of-motion coupled-cluster method

In CC theory, we arrive at a good description of the ground state. The excited states could be examined by carrying out separate, independent calculation for each state of interest, using in each case some appropriate zero-order reference determinant. However, it is usually difficult or even impossible to determine these adequate reference determinants; it is expensive to carry out individual calculations; and the states obtained in this manner are not orthogonal, which hinders the identification of the excited states.

Instead, we calculate the excited states in the spirit of CI theory, by a linear expansion in the space spanned by all states of the form

$$
\begin{equation*}
|\mathbf{c}\rangle=\sum_{\mu} c_{\mu} \hat{\tau}_{\mu}|\mathrm{CC}\rangle=\exp (\hat{T}) \sum_{\mu} c_{\mu} \hat{\tau}_{\mu}|\mathrm{HF}\rangle, \tag{7.25}
\end{equation*}
$$

where the summation is carried out over all the excitation operators present in the cluster operator. This expansion is referred to as the equation-of-motion coupled-cluster (EOM$\mathrm{CC})$ model. The expansion parameters are optimized by the minimization of the energy

$$
\begin{equation*}
E(\mathbf{c}, \overline{\mathbf{c}})=\frac{\langle\overline{\mathbf{c}}| \exp (-\hat{T}) \hat{H} \exp (\hat{T})|\mathbf{c}\rangle}{\langle\overline{\mathbf{c}} \mid \mathbf{c}\rangle} \tag{7.26}
\end{equation*}
$$

The EOM-CC theory can be thought as conventional CI theory with a similaritytransformed Hamiltonian, which carries the information about electron correlation; while the configuration expansions carry the information about the excitation structure of the electronic states.

7.1.7 Orbital-optimized coupled-cluster theory

In the standard CC theory, we use the Hartree-Fock orbitals and then determine a set of non-zero single-excitation amplitudes together with higher-excitation amplitudes. Alternatively, we could use $\exp \left(\hat{T}_{1}\right)$ to generate an orbital transformation to a basis in which the single-excitation amplitudes vanish. This is the idea behind the orbital-optimized (OCC) theory, in which the orbital-rotation operator $\exp (-\hat{\kappa})$ is used instead of $\exp \left(\hat{T}_{1}\right)$ (as they generate the same state to first order),

$$
\begin{equation*}
|\mathrm{OCC}\rangle=\exp (-\hat{\kappa}) \exp \left(\hat{T}_{O}\right)|0\rangle, \tag{7.27}
\end{equation*}
$$

where $\hat{T}_{O}=\hat{T}_{2}+\hat{T}_{3}+\cdots+\hat{T}_{N}$. The OCC energy is obtained in the usual manner by projecting the OCC Schrödinger equation against the reference state

$$
\begin{equation*}
E_{\mathrm{OCC}}=\langle 0| \exp \left(-\hat{T}_{O}\right) \exp (\hat{\kappa}) \hat{H} \exp (-\hat{\kappa}) \exp \left(\hat{T}_{O}\right)|0\rangle \tag{7.28}
\end{equation*}
$$

whereas the cluster amplitudes are determined by projection against the manifold $\left|\mu_{O}\right\rangle$ spanned by \hat{T}_{O}

$$
\begin{equation*}
\left\langle\mu_{O}\right| \exp \left(-\hat{T}_{O}\right) \hat{H} \exp (-\hat{\kappa}) \exp \left(\hat{T}_{O}\right)|0\rangle=0 \tag{7.29}
\end{equation*}
$$

The Brueckner coupled-cluster theory (BCC) is closely related to OCC and differs in some details of the solution of orbital rotation parameters. Unlike in standard CC theory, the OCC and BCC orbitals are optimized simultaneously with the optimization of the cluster amplitudes - compare with the MCSCF theory. Surprisingly, the differences between standard and $\mathrm{OCC} / \mathrm{BCC}$ wave functions are small. Only in the rare cases that are characterized by the sc. Hartree-Fock singlet instability the OCC/BCC are clearly more successful than the standard formulation.

7.2 Perturbation theory

Finally, we consider less rigorous but computationally more appealing improvements of the Hartree-Fock description, based on perturbation theory. They are rather successful, when the Hartree-Fock wave function is reasonably accurate.

In Møller-Plesset perturbation theory (MPPT) the electronic Hamiltonian is partitioned as

$$
\begin{equation*}
\hat{H}=\hat{f}+\hat{\Phi} \tag{7.30}
\end{equation*}
$$

where \hat{f} is the Fock operator (5.3) and $\hat{\Phi}$ the fluctuation potential, which is the difference between the true two-electron Coulomb potential in \hat{H} and the effective one-electron potential \hat{V} of the Fock operator, $\hat{\Phi}=\hat{g}-\hat{V}$. The zero-order state is represented by the Hartree-Fock state in the canonical representation, that is $\hat{f}|\mathrm{HF}\rangle=\sum_{I} \epsilon_{I}|\mathrm{HF}\rangle$, and by applying the standard machinery of perturbation theory, we obtain to second order in the perturbation

$$
\begin{align*}
& E_{\mathrm{MP}}^{(0)}=\langle\mathrm{HF}| \hat{f}|\mathrm{HF}\rangle=\sum_{I} \epsilon_{I} \tag{7.31}\\
& E_{\mathrm{MP}}^{(1)}=\langle\mathrm{HF}| \hat{\Phi}|\mathrm{HF}\rangle \tag{7.32}\\
& E_{\mathrm{MP}}^{(2)}=-\sum_{A>B, I>J} \frac{\left|g_{A I B J}-g_{A J B I}\right|^{2}}{\epsilon_{A}+\epsilon_{B}-\epsilon_{I}-\epsilon_{J}} . \tag{7.33}
\end{align*}
$$

Thus, the Hartree-Fock energy is equal to the sum of the zero- and first-order contributions; and by adding the second-order correction, we obtain the second-order Møller-Plesset energy (MP2)

$$
\begin{equation*}
E_{\mathrm{MP} 2}=E_{\mathrm{HF}}-\sum_{A>B, I>J} \frac{\left|g_{A I B J}-g_{A J B I}\right|^{2}}{\epsilon_{A}+\epsilon_{B}-\epsilon_{I}-\epsilon_{J}}, \tag{7.34}
\end{equation*}
$$

which is very popular and successful approach to introducing electron correlation on top of the Hartree-Fock wave function; providing surprisingly accurate and size-extensive correction at low computational cost. Higher-order corrections are derived in a similar manner,

Figure 7.3: The MPn dissociation curves of the $\mathrm{C}_{2 v}$ water molecule in the cc-pVDZ basis. Restricted MP2 with full and unrestricted with dashed line.
yielding MP3 and MP4 models, but these become rather expensive and are not as appealing compromise between cost and accuracy as MP2 is. Furthermore, the MPPT series have been shown to be inherently divergent.

In the coupled-cluster perturbation theory (CCPT) the Hamiltonian in the CC equations (7.11) and (7.12) is partitioned as in Eq. (7.30). The Fock and the cluster operator obey the following results:

$$
\begin{aligned}
{[\hat{f}, \hat{T}] } & =\sum_{\mu} \varepsilon_{\mu} t_{\mu} \hat{\tau}_{\mu} \\
{[[\hat{f}, \hat{T}], \hat{T}] } & =[[[\hat{f}, \hat{T}], \hat{T}], \hat{T}]=\cdots=0 .
\end{aligned}
$$

Thus we may write the non-Hermitian similarity-transformed Fock operator as

$$
\begin{equation*}
\hat{\bar{f}}=\hat{f}+\sum_{\mu} \varepsilon_{\mu} t_{\mu} \hat{\tau}_{\mu}, \tag{7.35}
\end{equation*}
$$

and we arrive at the working equations of the CCPT:

$$
\begin{align*}
E & =E_{0}+\langle\mathrm{HF}| \hat{\bar{\Phi}}|\mathrm{HF}\rangle \tag{7.36}\\
\varepsilon_{\mu} t_{\mu} & =-\langle\mu| \hat{\bar{\Phi}}|\mathrm{HF}\rangle \tag{7.37}
\end{align*}
$$

By expanding the cluster operator in the orders of the fluctuation potential we arrive at the amplitude equations

$$
\begin{equation*}
\varepsilon_{\mu} t_{\mu}^{(n)}=-\langle\mu|[\hat{\bar{\Phi}}]^{(n)}|\mathrm{HF}\rangle \tag{7.38}
\end{equation*}
$$

where $[\hat{\bar{\Phi}}]^{(n)}$ contains the $n^{\text {th }}$ order part of the similarity-transformed fluctuation potential. Then the amplitudes would be determined self-consistently from the projected equations after truncating the cluster operator at some excitation level. The CCPT is most often used to establish approximations to contributions from some excitations - the most famous is the non-iterative triples, or (T) correction to the CCSD wave function. Also very successful iterative CCPT schemes have been set up, e.g. the CC2 model approximates the CCSD model with the computational cost $\mathcal{O}\left(N^{5}\right)$ and CC3 the CCSDT model with the computational cost $\mathcal{O}\left(N^{7}\right)$. The CCPT series provides more systematic improvement to the wave function than the MPPT.

Both MPPT and CCPT are limited to the ground states of systems dominated by a single configuration. To overcome this, multiconfigurational perturbation theory has been developed. Most important such theory is CAS perturbation theory (CASPT), where the zero-order state is taken to be a CASSCF wave function. At the moment, it is the only generally applicable method for the $a b$ initio calculation of dynamical correlation effects of open- and closed-shell multiconfigurational electronic system.

7.3 Local correlation methods

Traditional correlated electronic wave function methods, which are built upon the delocalized Hartree-Fock molecular orbitals (MO) do not exploit the fact that the electron correlation-i.e., the electron-electron Coulomb cusp-is spatially a rather local phenomenon.

In the recent literature, localized correlation methods have been pursued to overcome the "scaling wall" encountered in the correlated wave function methods. However, despite recent progress, there is still a need to formulate and implement new approaches that exploit the locality of the electron correlation problem.

- Approaches based on introducing locality in the correlation treatment using localized MOs (LMO) appeared already in 1960s and in the context of CC methods in 1980s.
- An alternative approach was presented by Head-Gordon et al., who formulated the CC equations in a general non-orthogonal [e.g., the atomic orbital] basis using a general tensor-based formulation. Scuseria and Ayala presented a transformation
of the standard MO CC doubles (CCD) equations into the AO basis. Scuseria and Ayala argued that the solution of the CC equations in the AO basis scales in principle linearly with respect to N, but their approach seems so far not to have received any widespread use.
- A fully operational local CCSD implementation have been presented by Werner et al. This implementation, referred to as the local CCSD (LCCSD) method, is based on localizing the occupied space as suggested by Pulay and coworkers, using traditional MO localization schemes, and using for the virtual space a projected atomic orbital (PAO) basis. LCCSD further relies on a spatial division of the system into domains. Restrictions on the extent to which the interactions between different domains are accounted for is important for achieving the low-power scaling of LCCSD making the results deviate from the standard CCSD results.
- The equations of correlated wave function theories may also be derived in a biorthogonal projected atomic orbital basis, aiming at a black-box formulation that could be applied to large systems. This formulation also constitutes a good platform to introduce efficient approximation schemes to reduce the number of parameters and thus the computational scaling. The locality of the PAO basis is reflected in the fact that the cluster amplitudes, the integrals as well as the correlation energy contributions decay exponentially with respect to the distance between the centers of the participating PAOs.

7.4 Further reading

- T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley 2002), pp. 648-816.
- T. J. Lee and G. E. Scuseria, Achieving chemical accuracy with coupled-cluster theory, in S. R. Langhoff (ed), Quantum-Mechanical Electronic Structure Calculations with Chemical Accuracy (Kluwer 1995).
- O. Christiansen, Coupled cluster theory with emphasis on selected new developments, Theor. Chim. Acta 116, 106 (2006).

7.5 Exercises for Chapter 7

1. Evaluate the commutator $\left[\hat{H}, \hat{E}_{a i}\right]$ and the expression for this commutator applied to the Hartree-Fock state $\left[\hat{H}, \hat{E}_{a i}\right]|\mathrm{HF}\rangle$.
2. Verify the overlap between the doubly excited states:

$$
\begin{aligned}
\left\langle\begin{array}{c|c}
a b & c d \\
i j & k l
\end{array}\right\rangle & =4 \delta_{a c} \delta_{b d} \delta_{i k} \delta_{j l}+4 \delta_{a d} \delta_{b c} \delta_{i l} \delta_{j k}-2 \delta_{a c} \delta_{b d} \delta_{i l} \delta_{j k}-24 \delta_{a d} \delta_{b c} \delta_{i k} \delta_{j l} \\
& =2 P_{i j}^{a b}\left(2 \delta_{a i b j, c k d l}-\delta_{a j b i, c k d l}\right) .
\end{aligned}
$$

The operator P carries out the permutation $P_{i j}^{a b} A_{i j}^{a b}=A_{i j}^{a b}+A_{j i}^{b a}$.
3. * Verify the following commutation relations:

$$
\begin{aligned}
{\left[\left[\hat{H}, \hat{E}_{a i}\right], \hat{E}_{b j}\right]=} & -P_{i j}^{a b} h_{i b} \hat{E}_{a j}-P_{i j}^{a b} \sum_{p q}\left(g_{p b i q} \hat{e}_{p j a q}+g_{p q j a} \hat{e}_{p q b i}\right) \\
& +\sum_{p q}\left(g_{p b q a} \hat{e}_{p j q i}+g_{j p i q} \hat{e}_{b p a q}\right) \\
{\left[\left[\left[\hat{H}, \hat{E}_{a i}\right], \hat{E}_{b j}\right], \hat{E}_{c k}\right]=} & P_{i j k}^{a b c} \sum_{p}\left(g_{k b i p} \hat{e}_{p b i c}+g_{p b i c} \hat{e}_{p j a k}\right),
\end{aligned}
$$

and the expressions for these commutators applied to the Hartree-Fock state:

$$
\begin{aligned}
{\left[\left[\hat{H}, \hat{E}_{a i}\right], \hat{E}_{b j}\right]|\mathrm{HF}\rangle=} & 2 L_{i a j b}|\mathrm{HF}\rangle \\
& -P_{i j}^{a b}\left({ }^{\mathrm{I}} F_{i b} \hat{E}_{a j}+\sum_{k} L_{i k j b} \hat{E}_{a k}-\sum_{c} L_{c a j b} \hat{E}_{c i}\right)|\mathrm{HF}\rangle \\
& +\left(\sum_{b j c} g_{b j c a} \hat{E}_{b j} \hat{E}_{c i}-\sum_{b j k} g_{b j i k} \hat{E}_{b j} \hat{E}_{a k}\right)|\mathrm{HF}\rangle
\end{aligned}
$$

$$
\begin{aligned}
{\left[\left[\left[\hat{H}, \hat{E}_{a i}\right], \hat{E}_{b j}\right], \hat{E}_{c k}\right]|\mathrm{HF}\rangle=} & -P_{i j k}^{a b c} L_{j b i c} \hat{E}_{a k}|\mathrm{HF}\rangle \\
& +P_{i j k}^{a b c}\left(\sum_{l} g_{i l j c} \hat{E}_{a l} \hat{E}_{b k}-\sum_{d} g_{i d b c} \hat{E}_{a j} \hat{E}_{d k}\right)|\mathrm{HF}\rangle .
\end{aligned}
$$

In the above, we have introduced the notation $L_{p q r s}=2 g_{p q r s}-g_{p s r q}$ as well as used the three-index permutation operator,

$$
P_{i j k}^{a b c} A_{i j k}^{a b c}=A_{i j k}^{a b c}+A_{i k j}^{a c b}+A_{j i k}^{b a c}+A_{j k i}^{b c a}+A_{k j i}^{c b a} .
$$

4. * Consider, once again, the H_{2} molecule in a minimal basis.
(a) Show that the cluster operator becomes

$$
\hat{T}=\hat{T}_{2}=\frac{1}{2} t_{g g}^{u u} \hat{E}_{u g} \hat{E}_{u g}
$$

and that the biorthogonal basis can be expressed as

$$
\langle\overline{u u}|=\langle\mathrm{vac}| a_{u \beta} a_{u \alpha} .
$$

(b) Show that the unlinked coupled-cluster equations can be expressed as

$$
\begin{aligned}
\langle\mathrm{HF}| \hat{H}\left(1+\hat{T}_{2}\right)|\mathrm{HF}\rangle & =E \\
\left\langle\overline{{ }_{\mathrm{uu}}}\right| \hat{H}\left(1+\hat{T}_{2}\right)|\mathrm{HF}\rangle & =E\left\langle\overline{u u}{ }_{g g}\right| \hat{T}_{2}|\mathrm{HF}\rangle .
\end{aligned}
$$

(c) Show that the linked coupled-cluster equations are

$$
\begin{aligned}
\langle\mathrm{HF}| \hat{H}\left(1+\hat{T}_{2}\right)|\mathrm{HF}\rangle & =E \\
\langle\overline{u u}|\left(1-\hat{T}_{2}\right) \hat{H}\left(1+\hat{T}_{2}\right)|\mathrm{HF}\rangle & =0 .
\end{aligned}
$$

(d) Show, that the linked and unlinked coupled-cluster equations are equivalent.
5. \star Construct expressions for the CCSD vector functions

$$
\begin{aligned}
\Omega_{a i} & =\left\langle\begin{array}{c}
a \\
i
\end{array}\right| \exp \left(-\hat{T}_{2}\right) \hat{H} \exp \left(\hat{T}_{2}\right)|\mathrm{HF}\rangle \\
\Omega_{a i b j} & =\left\langle\begin{array}{c}
a b \\
i j
\end{array}\right| \exp \left(-\hat{T}_{2}\right) \hat{H} \exp \left(\hat{T}_{2}\right)|\mathrm{HF}\rangle
\end{aligned}
$$

6. \star The basic idea behind the quantum-mechanical perturbation theory (known as the Rayleigh-Schrödinger perturbation theory, RSPT) is to partition the Hamiltonian into two parts, $\hat{H}=\hat{H}_{0}+\hat{U}$, where \hat{H}_{0} is some zero-order Hamiltonian and \hat{U} the perturbation $\hat{H}-\hat{H}_{0}$. The orthonormal eigensolutions to the zero-order Hamiltonian, $\left|\Psi^{(0)}\right\rangle$ with the corresponding energy $E^{(0)}$ are then used to expand the eigenfunction $|\Psi\rangle$ of the exact Hamiltonian.
(a) Show, that

$$
\left(\hat{H}_{0}-E^{(0)}\right)\left|\Psi^{(n)}\right\rangle=-\hat{U}\left|\Psi^{(n-1)}\right\rangle++\sum_{k=1}^{n} E^{(k)}\left|\Psi^{(n-k)}\right\rangle
$$

and that all corrections to the zero-order energy are obtained as

$$
E^{(n)}=\left\langle\Psi^{(0)}\right| \hat{U}\left|\Psi^{(n-1)}\right\rangle
$$

(b) Write out explicitly three lowest-order corrections to the energy and to the wave function.
7. \star Consider the wave function correct to $n^{\text {th }}$ order in RSPT:

$$
\left.\left.\left|\Psi_{n}\right\rangle=\sum_{i=0}^{n} \mid \Psi^{(} i\right)\right\rangle
$$

Show that the energy calculated as the expectation value

$$
E=\frac{\left\langle\Psi_{n}\right| \hat{H}\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}
$$

is correct to order $2 n+1$. This result is known as the Wigner's rule. In addition, as a special case, consider the wave function correct to first order, $\left|\Psi_{1}\right\rangle=\left|\Psi^{(0)}\right\rangle+\left|\Psi^{(1)}\right\rangle$ and show that the expectation value may then be expressed in terms of the RSPT corrections as

$$
\frac{\left\langle\Psi_{1}\right| \hat{H}\left|\Psi_{1}\right\rangle}{\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle}=E^{(0)}+E^{(1)}+\frac{E^{(2)}+E^{(3)}}{1+\left\langle\Psi^{(1)} \mid \Psi^{(1)}\right\rangle}
$$

8. * Here we generalize the RSPT formalism to the expansion of the perturbed states

$$
\left|\Psi^{(n)}\right\rangle=\sum_{i} C_{i}^{(n)}|i\rangle
$$

in a nonorthogonal basis, whose overlap elements differ from the Kronecker delta: $\langle i \mid j\rangle \neq \delta_{i j}$.
(a) Show that the zero-order equations and the condition for the intermediate normalization become

$$
\begin{aligned}
\mathbf{H}_{0} \mathbf{C}^{(0)} & =E^{(0)} \mathbf{S C}^{(0)} \\
\left(\mathbf{C}^{(0)}\right)^{T} \mathbf{S C}^{(0)} & =0
\end{aligned}
$$

Chapter 8

Performance of the electronic-structure models

Having now considered the most important approximations to the molecular electronic wave function we will now address their performance in terms of a few numerical examples. It should be remembered that none of these models (besides FCI, which is inapplicable for most cases) is an all-around-good one: good performance in some problem and/or in some system does not guarantee good performance in another situation. In addition, rehearse the graph concerning the approximations to the one- and N-electron spaces.

8.1 Molecular equilibrium geometries

One of the most common applications of molecular electronic-structure calculations is the determination of the molecular equilibrium structures. Good geometries are also of fundamental importance in study of molecular properties.

We consider the mean errors and standard deviations of calculated bond distances and bond angles as compared to experimental results using a hierarchy of N-electron models and a hierarchy of Gaussian basis sets. The error is given by $\Delta=P_{i}^{\text {calc }}-P_{i}^{\text {exp }}$, and the mean error and standard deviation by

$$
\begin{align*}
\bar{\Delta} & =\frac{1}{n} \sum_{i=1}^{n} \Delta_{i} \tag{8.1}\\
\Delta_{\text {std }} & =\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(\Delta_{i}-\bar{\Delta}\right)^{2}} \tag{8.2}
\end{align*}
$$

They can be conveniently represented graphically in terms of the normal distribution

$$
\begin{equation*}
\rho(P)=N_{c} \exp \left[-\frac{1}{2}\left(\frac{P-\bar{\Delta}}{\Delta_{\mathrm{std}}}\right)^{2}\right] . \tag{8.3}
\end{equation*}
$$

Figure 8.1: Performance of various N-electron models in conjunction with one-electron bases in 29 molecular bond lengths.

The calculations were carried out for sets of small molecules containing main-group elements. 29 bond distances and 10 bond angles were calculated, and the results are presented in Figures 8.1 and 8.2.

Observations:

- The Hartree-Fock model is suitable for only preliminary calculations.
- The $\operatorname{CCSD}(\mathrm{T})$ model is capable of providing structures - both bond distances and angles - of high quality.
- The MP2 model is less accurate but more generally applicable as it is considerably less expensive. Higher-order MPPT is significantly less accurate but hideously expensive, i.e., useless.
- The performance of the CCSD model is disappointing. It however performs more robust than MP2 in some selected cases with complicated electronic structure.
- The CISD model is also rather useless, showing no improvement when the basis set is increased.
- The basis-set requirements are different for different models. Whereas there is no much use to use QZ-level basis sets with the Hartree-Fock model (as the results are not improved), the correlated models require at least a TZ-level basis set, but preferably the cc-pVQZ basis.

The results suggest the following recipe for the determination of molecular structures: obtain an initial structure with HF using a DZ-level basis and improve it by using MP2 and a TZ basis. If ever possible, calculate the final geometry in the cc-pVQZ basis using the $\operatorname{CCSD}(\mathrm{T})$ model.

8.2 Molecular dipole moments

The comparison between the experimental and calculated molecular dipole moments is difficult, as the experiments are measuring the dipole moment in the vibrational ground state μ_{0}, whereas the calculations are carried out for the equilibrium dipole moment μ_{e}, and thus we would have to carry out a vibrational averaging in order to speak of the same quantity. However, there are a few experimental values for μ_{e}, and we shall compare the performance of our standard models with those. Note, that due to the outer-valence origin of this property, we have to augment our basis sets with extra diffuse primitive Gaussians; hence we are using the aug-cc-pVXZ basis sets. The geometries are optimized using the same wave function as for the calculation of the dipole moment.

We observe from Table 8.1, that the quality of the calculation is more dependent on the correlation treatment than the cardinal number of the basis set; yet it is necessary to augment the basis set. The further augmentation (d-aug-cc-pVXZ basis sets) of the basis set does not affect the calculated dipole moments significantly.

Figure 8.2: Performance of various N-electron models in conjunction with one-electron bases in 10 molecular bond angles.

Figure 8.3: Changes in bond lengths calculated from $\bar{\Delta}$ of the cc-pVQZ basis.

	Exp.	HF	MP2	CCSD	CCSD(T)		
		QZ	QZ	QZ	DZ	TZ	QZ
NH_{3}	1.561(5)	1.544	1.517	1.530	1.541	1.513	1.521
HF	1.803(2)	1.884	1.811	1.813	1.799	1.797	1.800
$\mathrm{H}_{2} \mathrm{O}$	$1.8473(10)$	1.936	1.864	1.870	1.859	1.845	1.853

Table 8.1: Calculated dipole moments.

Figure 8.4: Reaction enthalpies.

8.3 Reaction enthalpies

Next, we study the reaction enthalpies of 13 chemical reactions among closed-shell molecules. The calculations are carried out in the HF-MP2-CCSD-CCSD(T) hierarchy, using the correlation-consistent basis set hierarchy supplemented with steep functions to provide core-polarization, which - somewhat surprisingly - must be included in the high-precision calculation of reaction enthalpies. The results are illustrated in Figure 8.4.

8.4 Notes on total electronic energies

For the total molecular energy, i.e., E in the molecular Schrödinger equation, there is no experimental counterpart. and we examine it in order to establish a feeling on the severity of the approximations involved in the calculation. We should recall that there were a third class of approximations in addition to the truncation of one- and N-electron spaces: approximations in the molecular Hamiltonian \hat{H}. To investigate the validity of the use of the non-relativistic Hamiltonian, we include the leading-order one-electron relativistic corrections that include the spin-orbit interaction (SO), mass-velocity (MV), and the Darwin (Dar) corrections. The leading-order two-electron contributions, such as the two-electron Darwin contribution and the spin-spin contact interaction, are smaller by at least one order of magnitude. The MV and Dar corrections are always of opposite sign. The calculation is carried out using the CCSDT model for the water molecule in the cc-pCVXZ bases at a $\operatorname{CCSD}(\mathrm{T}) /$ cc-pCVQZ geometry.

Observations:

	Total energy [E_{h}]		Energy corrections [$\mathrm{m} E_{h}$]					
	CCSDT	HF	$\mathrm{HF} \rightarrow$ SD	$\mathrm{SD} \rightarrow(\mathrm{T})$	(T) \rightarrow T	SO	MV	Dar
DZ	-76.24121	-76.02680	-211.21	-3.04	-0.16			
TZ	-76.33228	-76.05716	-267.40	-7.65	-0.08			
QZ	-76.35981	-76.06482	-285.98	-8.99	-0.01	0.00	-255.87	203.69
5Z	-76.36899	-76.06708	-292.44	-9.52	0.04			

Table 8.2: Decomposition of the CCSDT energy of water.

- It is remarkable how a tiny, less than one per cent fraction of the total energy, plays such an important role in the determination of molecular properties.
- The leading-order relativistic correction, $-52.18 \mathrm{~m} E_{h}$, is larger than the triples contribution already in water, and gets far more pronounced in systems with heavier elements present!
- (T) is a very good approximation to full triples.

[^0]: $1_{\text {In atomic units used throughout this course, where }} \hbar=m_{e}=4 \pi \epsilon_{0} \equiv 1 ; c=1 / \alpha \approx 137$.

[^1]: ${ }^{2}$ Considering only the variables \mathbf{r} (position vectors), which in this case are most conveniently represented as the variables of spherical coordinates, $\mathbf{r}=(r, \theta, \rho)$

[^2]: $6_{\text {Note that the }}$ unperturbed wave function corresponds here to $\alpha=1$ instead of $\alpha=0$.

[^3]: $1_{\text {The matrix }} \operatorname{exponential}$ is defined as $\exp (\mathbf{A})=\sum_{n=0}^{\infty} \mathbf{A}^{n} / n!$.

[^4]: ${ }^{2}$ Hereafter, the spin functions α and β will be denoted generically by σ, τ, μ and ν.

