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Relativistic Quantum Chemistry (RQC) has become a large 

and fertile field. The current version 17.1. of the RTAM data-

base (rtam.csc.fi) [1] has 16 678 entries. Of course, Nature is 

relativistic, and only relativistic, but the previous models, be-

fore RQC, were non-relativistic and it is interesting to know, 

how large the changes are, when the relativistic effects are 

introduced. A brief answer [2] is that many of the differences 

from the 5th Period to the 6th Period then receive a rational 

explanation. In a way we are then crossing the special relativ-

ity of Einstein with the Periodic System of Mendeleev (and 

others). The valence-shell relativistic effects, down a column, 

roughly grow as 2Z , the square of the full nuclear charge, Z . In 

very high-precision work one already needs RQC and Quantum 

Electrodynamics (QED) effects for hydrogen, Z  = 1.

Indeed, our first question is to ask, how complete is our phys-

ical model? Taking the Dirac-Fock-Breit (DFB) Hamiltonian 

as the starting point, the largest missing piece of Physics seems 

to be the Lamb shift. To lowest order it has the Self-Energy 

(SE) and Vacuum Polarization (VP) terms, of opposite sign and 

in this order of importance. For the ns  valence electrons of 

heavier Group 11 elements, they together are about −1% of the 

Dirac-level relativistic effects. In that sense, the DFB seems to 

be "101% right." For a review on the 'Physics behind Chemis-

try', see the recent paper [3]. The next physical terms, take par-

ity non-conservation, are many powers of ten further down [4]. 

Should one use the hypothetical reference of a point nucleus, 

the finite-nucleus effects become comparable to QED for large

Z , see [3], Figure 3.

Assuming, then, that we have a reasonably firm physical ba-

sis, how well can we do the actual calculation? Sometimes the 

calculation becomes easier, if a transformation of the original 

DFB Hamiltonian is used. An example is the Douglas-Kroll-

Hess (DKH) approximation, to some order. The first paper by 

Nakajima [5] is a review on this example. The DKH-like ap-

proaches can be taken to infinite order, see the review by Nakai 

and Seino [6].

The next question is the way of handling electron correlation. 

If the Hartree-Fock level is taken as the starting point, one se-

quence is the Møller-Plesset MPn series. Another sequence, ob-

tained by summing single, double, etc. virtual excitations to infi-

nite order, is the coupled-cluster sequence CCSD, CCSD (T) etc.  

The reference does not have to be a single configuration. Mul-

tireference Perturbation Theories are discussed here by Suzuki 

et al. [7]. A shortcut to get the electron-electron cusp right is to 

introduce the interelectronic coordinates to the wavefunction. 

These are the so-called 12R (or 12F ) methods. Finally, a Gordian 

solution to the correlation problem is the Density Functional 

Theory, DFT. It is a very economic approach and makes even 

large molecules tractable. DFT is seldom very wrong. In this 

volume the intersection of DFT and relativistic calculations is 

treated by Tsuneda [8].

A further axis is that of the basis sets. Traditionally, think-
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ing of Slater basis functions, approximated by Gaussians, one 

speaks of single-, double-, triple- etc. ζ basis, where ζ is the 

effective Slater exponent. If relativistic pseudopotentials are 

developed, the appropriate basis sets usually come with them.

One particularity of relativistic wavefunctions is the spin-

orbit (SO) splitting of non- s  atomic states. For instance, the 

atomic p levels are split into 1 2p /  and 3 2p /  levels. For mol-

ecules, this necessitates the use of double groups for the elec-

tronic states. This is the case as soon as the lowest-order SO is 

used. An SO configuration interaction method by Yabushita [9] 

is included here.

"The proof of the pudding is in the eating." A very concrete 

example is isotope separation. For the heavier elements the iso-

tope shifts are driven by nuclear-volume effects. Two particular 

separations are the uranium isotopes U-235 and U-238, or the 

isotopes of gadolinium, discussed in the present volume by Abe 

et al. [10]. This slight difference of equilibrium constants has 

an importance both in industrial-level processes and in geo-

chemistry or cosmochemistry. Another application of RQC is 

the hydration of divalent alkaline earth ions, discussed here by 

Mori and Matsuda [11].

A third, refreshingly different yet real, application is that on 

positronic compounds by Tachikawa and Kita [12]. Because 

the net charge of the nucleus + electrons is zero for a neutral 

molecule, the positron is presumably bound by the combined 

multipole moments of that molecule. Forgetting the higher mul-

tipoles, as well as induction, dispersion etc., we can start with 

the dipole moment. Such a correlation between the positron 

binding energy and the molecular dipole moment was found 

here by Tachikawa and Kita [12]. Although the positron never 

moves fast, the mentioned dipole moment can be strongly in-

fluenced by relativity.

For the record, the problem of an electron (or positron) in the 

field of a point dipole goes back to Fermi and Teller [13]. For 

the Schrödinger equation, the present dipole moment binding 

limit is 0.639 314 877 199 981 au [14]. The electron binding to 

higher multipoles has also been studied, see e.g [15].

Finally, there is room for interpretative considerations of the 

Dirac Equation [16].
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