The research activities of the TACC group comprise:

Computational studies of magnetically induced current densities and analysis of molecular magnetic properties including molecular aromaticity.

Computational spectroscopy studies including vibrational bands in electronic absorption and emission spectra. Calculations of rate constants for non-radiative electronic transition and quantum yields of emitters of organic light-emitting diodes (OLEDS).

Developing algorithms for numerical electronic structure calculations.


Selected recent papers

1. R. R. Valiev, G. V. Baryshnikov, R. T. Nasibullin, D. Sundholm, H. Ågren, ''When are antiaromatic molecules paramagnetic?'', J. Phys. Chem. C 124 (2020) 21027-21035. DOI:10.1021/acs.jpcc.0c01559

2. R. R. Valiev, G. V. Baryshnikov, D. Sundholm, H. Ågren, B. F. Minaev, T. Kurtén, ''First-principles calculations of anharmonic and deuteration effects on photophysical properties of polyacenes and porphyrinoids'', Phys. Chem. Chem. Phys., 22 (2020), 22314-22323. DOI:10.1039/D0CP03231J (2020 PCCP HOT Articles)

3. C. A. Celaya, M. Orozco-Ic, M. Dimitrova, L. N. Wirz, D. Sundholm, ''A method for designing a novel class of gold-containing molecules'', Chem. Commun. 56 (2020) 5433-5436. DOI:10.1039/D0CC01227K

4. I. Benkyi, O. Staszewska-Krajewska, D. T. Gryko, M. Jaszuński, A. Stanger, D. Sundholm, ''The interplay of aromaticity and antiaromaticity in N-doped nanographenes'', J. Phys. Chem. A 124, (2020) 695-703. DOI: 10.1021/acs.jpca.9b11315

5. J. Greiner, D. Sundholm, ''Calculation of Vibrationally Resolved Absorption and Fluorescence Spectra of the Rylenes'', Phys. Chem. Chem. Phys. 22 (2020) 2379-2385. DOI: 10.1039/C9CP06089H

6. Y. Shao, Y. Mei, D. Sundholm, V. R. I. Kaila, ''Benchmarking the performance of time-dependent density functional theory methods on biochromophores'', J. Chem. Theory Comput. 16 (2020) 587-600. DOI: 10.1021/acs.jctc.9b00823.

7. G. Baryshnikov, R. R. Valiev, A. Kuklin, D. Sundholm, H. Ågren, ''Cyclo[18]Carbon: Insight into Electronic Structure, Aromaticity and Surface Coupling'', J. Phys. Chem. Letters 10 (2019) 6701-6705. DOI: 10.1021/acs.jpclett.9b02815

8. K. Reiter, F. Weigend, L. N. Wirz, M. Dimitrova, D. Sundholm, ''Magnetically Induced Current Densities in Toroidal Carbon Nanotubes'', J. Phys. Chem. C 123 (2019) 15354-15365. DOI: 10.1021/acs.jpcc.9b03769

9. S. Lehtola, M. Dimitrova, D. Sundholm, ''Fully numerical electronic structure calculations on diatomic molecules in weak and strong magnetic fields'', Mol. Phys. 114 (2020) e1597989. DOI:10.1080/00268976.2019.1597989

10. C. M. Suomivuori, H. Fliegl, E. B. Starikov, T. S. Balaban, V. R. I. Kaila, D. Sundholm, ''Absorption Shifts of Diastereotopically Ligated Chlorophyll Dimers of Photosystem I'', Phys. Chem. Chem. Phys. 21 (2019) 6851-6858. DOI: 10.1039/C9CP00616H (Hot PCCP paper 2019)