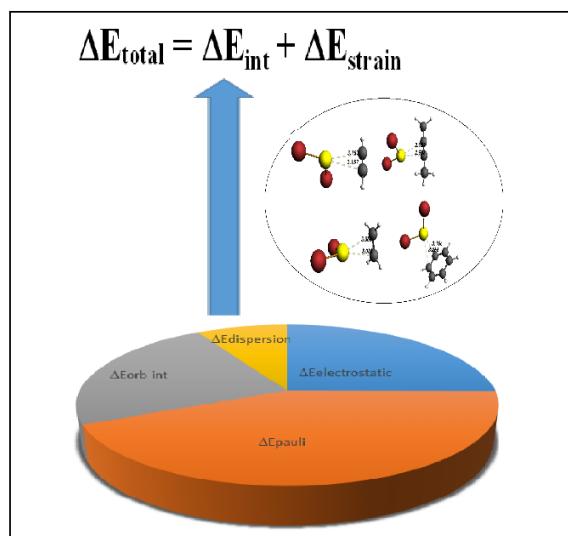


On the nature and extent of chalcogen $\cdots\pi$ interactions

Authors; Shah Masood Ahmad, Marco Dalla Tiezza, Marco Bortoli and Laura Orian*


Affiliation; *Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1 35131-Padova (PD), Italy*

Corresponding Email Address; shahmasood.ahmad@studenti.unipd.it

Weak non-covalent interactions have gained paramount importance in chemistry. They play a crucial role in different phenomena, among which the self-assembly of large molecules, biological pattern recognition and crystal packing. Chalcogen- $\cdots\pi$ interactions, which are the focus of the present study, were found in biological active compounds like cysteine, selenocysteine, selenomethionine.¹⁻²

In our analysis, calculations were performed to predict, characterize and quantify chalcogen- $\cdots\pi$ interactions between X_2Y ($X = F, Cl, Br, I$ and $Y = S, Se, Te$) and an unsaturated substrate (ethyne, 2-butyne, ethylene and benzene). The density functional BLYP in combination with TZ2P basis set was used and scalar relativistic effects were accounted for through zeroth-order regular approximation (ZORA).³ MP2/aug-cc-PVTZ (PP) results were included for selected cases. A fragment-based approach (Activation Strain Analysis, ASA)⁴ was employed to gain insight on the nature of the interaction established between the chalcogen center and the π system, which behave like a Lewis acid-base couple. Trends are shown and discussed and in perspective will be extended to biological sites to investigate chalcogen based redox active enzymes and supramolecular aggregated architectures.

Keywords: Activation Strain Analysis, (ASA), chalcogen- $\cdots\pi$ interactions, DFT calculations, ZORA, chalcogen centers

References

- (1) Jacob, C.; Giles, G.I.; Giles, N. M.; Sies. H. *Angew. Chem. Int. Ed.* **2003**, 42, 4742 – 4758.
- (2) Nziko, V.P.N.; Scheiner, S. *J. Phys. Chem. A.* **2015**, 119, 5889–5897.
- (3) Esrafil, M. D.; Mohammadian-Sabet, F. *Mol. Phys.* **2015**, 113, 3559-3566.
- (4) Zaccaria, F.; Wolters, L.P.; Guerra, C.F.; Orian, L. *J. Comp. Chem.* **2016**, 37, 1672-1680.